
 

ALTREONIC NV
Gemeentestraat 61A B1 
B3210 Linden, Belgium

CONTACT
+ 32 16202059
info.request (@) altreonic.com

WEB

www.altreonic.com

From Deep Space to Deep Sea
!

Unique Open Technology Licensing offer from Altreonic
for Certifiable Trustworthy Software and Systems

Altreonic offers advanced embedded systems technology under a unique risk-free Open
Technology License. The licensee receives all supporting design documents, formal
models, source code, test suites, etc. and the right to rebrand the software whereby all
certification and business risks are seriously reduced. Free yourself from legacy COTS and
open source limitations. Two technologies are offered: the formally developed, network-
centric OpenComRTOS™ Designer and the internet based GoedelWorks™ portal for
supporting certifiable engineering projects. Soon to be integrated. Complemented with
engineering services.

GoedelWorks™ reflects our global “Correct by Construction” approach,
covering from early requirements capturing till the last line of source
code and hardware component. Based on a formalised and clean meta-
model, it allows describing any (engineering) process and support users
executing it. Out-of-the-box support for ASIL centered IEC-61508,
ISO-26262, ISO-13849, ISO-25119, ISO-15998 and IEC-62061, CMMI
and automotive SPICE process flow. Integrate your own specific process
flows for pre-certification support during the development of the system.

GoedelWorks™ implements the core concepts of any engineering
standard: full traceability and configuration management from top level
Requirements to the last line of source code.

OpenComRTOS™ Designer breaks new grounds in the field of Real-
Time Operating Systems. Formally designed and verified it is a 4th
generation of the Virtuoso RTOS used by ESA on the Rosetta mission.

Conceptually a scalable communication layer to support heterogeneous
multi-processor systems in a transparent way, it runs equally well on a
single processor. It runs on small microcontrollers, many-core chips with
little memory, parallel DSPs as well widely distributed systems and
supports FPGAs. Unique support for distributed priority inheritance.
Scalable, yet only requiring about 5 to 15 KB/node. Code is generated
from a visual modelling environment. Full qualification package
available. A big resource and time saver for management, a joy to use.

NEW:	
 Ada	
 and	
 SPARK-­‐Ada	
 interface	
 for	
 OpenComRTOS	
 Designer	

http://www.altreonic.com
http://altreonic.com
http://altreonic.com
http://www.altreonic.com

Ada and SPARK-Ada interface
for OpenComRTOS Designer

!
Ada has a long history. Originally developed in the late 70's on request of the US DoD, it became available with a
certified compiler in 1983. While the language had as goal to improve the quality of software, in its striving to be
complete (procedural, object-oriented, modularity, concurrent tasking and many more features), it was complex and

fairly heavy to use. Nevertheless, it was and still is the language of choice for
large safety critical applications, especially when large teams are involved. Its
complexity, the steep pricing for the tools and its lower performance inhibited
its wider use. Hence C compilers offering often better performance and more
control over the hardware gradually became the compiler of choice even if the
language has many safety issues. Ironically, VHDL which is a widely used
programming language to develop hardware circuits heavily borrowed from
Ada.
Over the years efforts have been made to reduce the complexity and to
improve the usability of Ada. For example the Ravenscar profile introduced a
large number of restrictions on Ada-95. It is now part of Ada-2005 making it
easier to use for hard real-time safety critical applications. Similarly SPARK
was defined as a derived language (originally since 1983). SPARK-2014 is
based on Ada-2012 and adds a new dimension in formal verification by
adding "contracts" as part of the language. Using the GNAT Prover as a back-
end of the GNAT compiler it combines for the first time human readable
formal specifications with formal verification in a programming language,
making it ideally suitable for high integrity systems (as found in safety and
security critical applications). The same pre- and post conditions, loop
invariants, etc. will become runtime assertions and can be formally verified at
compile time using the prover tool.

By adding interfaces for Ada and SPARK-Ada as programming languages that can be used with OpenComRTOS
Designer, Altreonic extends this evolution towards a very clean (CSP inspired) concurrent Tasking model with hard
real-time capabilities from one to many processor systems. Not all Ada constructs are supported (for similar reasons
as given for the Ravenscar profile and SPARK), as OpenComRTOS provides itself a formally developed and verified
runtime layer for multi-tasking with inter-task synchronisation and communication and priority based preemptive
scheduling as well as including support for distributed priority inheritance using a ceiling protocol. For reasons of
safety, OpenComRTOS also favors a model whereby code and datastructures are generated statically at compile
time, thereby reducing the risks of runtime error conditions.
As with the standard C interface, the user defines his application as a number of task entities and interaction hubs.
The latter can be binary events, counting semaphores, FIFOs, Ports, Resources (acting like an improved mutex),
DataEvents, BlackBoards, MemoryBlockQueues, Memory- and Packet Pools. The interaction services using these
hub types acts like guarded actions (i.e. synchronisation points) which then enable the predicate actions associated
with the hubs.
What sets OpenComRTOS apart is that all these services operate system-wide whereby priorities are also system-
wide parameters to schedule everything in order of priority, including when communicating, preserving real-time
properties across processor boundaries. When Resource locking is used, priority inheritance works distributed as
well and reduces system-wide blocking times.
The user can now program his OpenComRTOS Tasks either in C, C++, Ada or SPARK_Ada and mix them in a
single application. When using SPARK this means that he mainly programs the sequential (procedural) segments
with the multi-tasking being provided by the OpenComRTOS runtime layer. SPARK allows him to make use of
formal verification for various aspects related to data-flow analysis, information-flow analysis, robustness properties
and various functional properties expressed as contracts, loop-invariants or loop-variants. These expressions are an
integral part of the source code and document the intention of the program. Contrary to e.g. runtime assert
statements in C, the properties can be formally proven at compile time based on the source code.

From Deep Space to Deep Sea

