
An industrial case: pitfalls and benefits of applying formal methods

to the development of a network-centric RTOS

Eric Verhulst, Gjalt de Jong, Vitaliy Mezhuyev

Open License Society, Leuven, Belgium

E-mail: {eric.verhulst,gjalt.dejong, vitaliy.mezhuyev}@OpenLicenseSociety.org

Abstract. This paper describes a project to develop a network-centric RTOS from scratch using

formal methods. The (initial) purposes of the project was to get acquainted with the use of formal

methods for software engineering and to obtain a trustworthy RTOS as a component for building

networked embedded systems. The work was done by a small, distributed team that had no prior

experience on using formal methods and with a small budget. The outcome is that the use of formal

methods is most useful as an architectural design method, more than as a formal verification of

software code. The resulting software has many properties that were not anticipated at the beginning

and would likely not have been achieved without the use of Formal Methods

Keywords. RTOS, Formal Methods, Trustworthy, Safety, Security, Network centric

Acknowledgements

The OpenComRTOS project was partly funded under an IWT project for the Flemish Government in

Belgium. The formal modeling activities are provided by the University of Gent. Melexis was industrial

sponsor.

1 Problem statement

Real-Time Operating Systems are an

essential component in most embedded systems.

They are essential when the application becomes

complex and safety critical. They provide a way to

organize the application in a set of modules that

interact, the scheduler helps in achieving

predictable real-time behavior, and they allow the

application to recover from run-time error

conditions.

Nevertheless, almost none of the

commercial and open source RTOS-es have been

certified according to standards like IEC61508 or

DO178. Almost none have been formally verified.

Part of the reason is historical: RTOSes are fairly

complex and highly concurrent pieces of software

that in addition must provide good performance

with as little as possible resources. Hence, RTOSes

are often developed by very skilled software

engineers, but often following a bottom-up

approach with little documentation, preventing

even certification.

Open License Society undertook the

OpenComRTOS project in 2004 with the aim to

develop a novel network-centric RTOS. Formal

methods were used from the start with much effort

going into finding the right architecture and being

able to verify that the software is correct.

We also noted related work by Iain D.

Craig [11][12] when this project was finished. This

work is however rather different. It is mainly

concerned with the formal specification and

refinement of existing Operating Systems. The

author shows that this is viable. Our work has

indicated that formal methods provide serious

benefits as well when used for designing new

architectures from the very beginning, ven for non-

Figure 1 Open License SE methodology

trivial pices of software like RTOS.. As a result,

formal verification of the final architecture is also a

lot more straightforward because it results in a

much cleaner architecture.

2 Systems (and Software) Engineering

approach

The Systems Engineering approach developed by

Open License Society is a classical one as defined

in [4] but adapted to the needs of embedded

software development. It is an evolutionary

iterative process. In such a process, much attention

is paid to an incremental development requiring

regular review meetings by several of the

stakeholders. On the architectural level, the system

or product under development is defined under the

paradigm of “Interacting Entities”, which maps

very well on an RTOS based runtime system.

When programming with RTOS, the appliction is

split over number of concurrent entities called

“Tasks”, scheduled in time by the RTOS scheduler.

The “interact” through RTOS services, essentially

points of synchronization but with a service

specific semantic behaviour. In OpenComRTOS

these services decouple the tasks completely from

each other. Applied on the development of

OpenComRTOS, the process was started by

elaborating a first set of requirements and

specifications. Next an initial architecture was

defined. Starting from this point on, two groups

started to work in parallel. The first group worked

out an architectural model while a second group

developed an initial formal model using

TLA+/TLC [2]. This model was incrementally

refined.

At each review meeting between the software

engineers and the formal modeling engineer, more

details were added to the model, the model was

checked for correctness and a new iteration started.

This process was stopped when the formal model

was deemed close enough to the implementation

architecture. Next, a simulation model was

developed on a PC (using Windows NT as a virtual

target). This code was then ported to a real 16bit

microcontroller [5]. On this target a few target

specific optimizations were performed on the

implementation, while fully maintaining the design

and architecture. The software was written in ANSI

C and verified with a MISRA rule checker. [8]

Finally the reverse process was undertaken. For

each service class a formal model was built

matching the implementation and essential

properties were verified.

3 Lessons from using formal modeling

3.1. Selecting a methodology

Formal techniques basically fall into two

categories. First we have model checkers: a model

of the software is constructed at an abstract level

and the model checker will basically verify that

specified properties are never violated and if they

are a trace of a counter-example will be provided.

A second class of formal techniques are so-called

proofing systems. They allow to proof by

deduction and aided by a computing machine that a

certain property holds.

Given that the project started with a clean slate and

the strong architectural nature of the project we

opted to use a model checker. It must be noted

however that model checkers, neither proof

systems allow to verify just any set of properties.

E.g. most model checkers are only suitable for

verifying event triggered systems as e.g. numerical

properties quickly result in a state space explosion,

restricting their use to rather small systems.

Fortunately for an RTOS, this is less of an issue.

 A first observation is that while there are many

tools and methods available, most of them are

based on the same principles. However, many of

the tools we found are academic and suffer from

lack of robustness, performance or ease of use,

clearly indicating that this is still an emerging

discipline. Also when used by commercial vendors,

the formal tools are often hidden and do their work

in the background. This obliterates the need to be

mathematical proficient and user can stay in the

problem domain, instead of the math solution

domain, but no such integration was found that

applied to our project.

While we had an initial bias toward using SPIN

[7], in the end it was decided to use TLA/TLC

from Leslie Lamport. [2] Although the

mathematical notation of the TLA language was

first considered a hindrance versus the C-like

Promela language of SPIN, in the end this has

proven to be a major benefit as it forced to reason

in a much more abstract way about the RTOS.

3.2. Why are there no errors?

The initial goal of using formal techniques was to

be able to prove that the software is correct. This is

an often heard statement from the formal

techniques community. A first surprise was that

each model gave no errors when verified by the

TLC model checker. This was actually due to the

iterative nature of the model development process

and partly its strength. From an initial rather

abstract model, successive models are developed

by checking them using the model checker and

hence each model is correct when the model

checker finds no illegal states. As such, model

checkers can’t proof that the software is correct.

They can only proof that the formal model is

correct. For a complete proof of the software the

whole programming chain as well as the target

hardware should be modeled and verified as well.

In the ideal case, the software should even be

generated from the formal models. This is today an

unachievable result due to its complexity and the

resulting state space explosion. The model itself

would be many times larger than the software

being developed. It indicates however that if we

would make use of verified target processors and

verified programming language compilers, the

model checker becomes practical as limited to

modeling the application.

Other issues were discovered in relation to

the use of formal modeling. E.g. the TLC model

checker declares every action as a critical section,

whereas e.g. in the case of a RTOS, many

components operate concurrently and real-time

performance dictates that on a real target the

critical sections are kept as short as possible. While

this dictates the avoidance of shared data

structures, it would be helpful to have formal

model assistance that indicates the required critical

sections.

Nevertheless, a major benefit of using the

model checker has proven to be its abstraction. The

models developed first in/in the beginning of the

project had to be discarded after it was clear that

they reflected how a programmer would write the

software, often by unconsciously taken

implementation decisions, resulting in unnecessary

complexity. Once this was understood,

(re)developing the models was much more

straightforward.

The final issue is the well known problem of state

space explosion. Just modeling a small

OpenComRTOS application, the TLC model

checkers has to examine a few million states,

exponentially taking more time for every task

added to the model. This also requires increasing

amounts of memory and limits the model checking

to subsets of the whole architecture. However, this

was not a real issue as the architecture is generic

and based on a message passing protocol that is

independent of the size of the system. The

algorithmic logic of the RTOS kernel also makes

no difference between local or remote services,

making it independent of the topology of the target

network and hence there was no need to make the

network topology explicit.

4 A thin boundary between past experience,

creativity and model checking

For completeness, we need to mention that some of

the elements of the OpenComRTOS architecture

were inherited from a previous distributed RTOS

(Virtuoso [4]) that was developed in a traditional

way, and with some inspiration from CSP. The

communication layer of this distributed RTOS used

packets but the kernel was a large jump table. We

had also experienced issues with portability and

scalability. Finally, the third generation of the

Virtuoso RTOS was loosing performance through

what we can call “feature bloating”. Nevertheless,

it was difficult to see how a better architecture

could be found that would at the same time provide

improvements in terms of code size, safety,

security and scalability properties. In addition we

defined as objective that it should be able to run

from memory restricted multi-core CPUs to widely

distributed processing nodes running legacy

software.

Formal modeling has helped a lot in formalizing

the problem and as a result we can claim success

beyond initial expectations.

Figure 2 OpenComRTOS-L0 view

5 Novelties in the architecture

OpenComRTOS has a semantically layered

architecture. At the lowest level (L0) the minimum

set of entities provides everything that is needed to

build a small networked real-time application.

The entities needed are Tasks (having a

private function and workspace), an interaction

entity we called an L0_Port to synchronize and

communicate between the Tasks. Ports act like

channels in the tradition of Hoare’s CSP but allow

multiple waiters and asynchronous communication.

One of the tasks is a kernel task scheduling the

tasks in order of priority and managing and

providing Port based services. Driver tasks handle

inter-node communication. Pre-allocated as well as

dynamically allocated packets are used as a carrier

for all activities in the RTOS such as: service

requests to the kernel, Port synchronization, data-

communication, etc. Each Packet has a fixed size

header and data payload with a user defined but

global data size. This significantly simplifies the

management of the Packets, in particular at the

communication layer. A router function also

transparently forwards packets in order of priority

between the nodes in a network.

OpenComRTOS L0 therefore is a

distributed, scalable and network-centric operating

systems consisting of a packet-switching

communication layer with a scheduler and port-

based synchronization. This architecture has

proven to be very efficient. E.g. a minimum single

processor kernel can have a code size of less than 1

Kbyte, with 2 Kbytes for the multi-processor

version.

In the next semantic level (L1) services

and entities were added as found in most RTOS:

Boolean events, counting semaphores, FIFO

queues, resources, memory pools, mailboxes, etc.

The formal modeling has allowed defining all such

entities as semantic variants of a common and

generic entity type. We called this generic entity a

“Hub”. In addition, the formal modeling also

helped to define “clean” semantics for such

services whereas ad-hoc implementations often

have side-effects.

 As the use of a single generic entity

allowed a much greater reuse of code, the resulting

code size is about 10 times less than for an RTOS

with a more traditional architecture. One could of

Fig 4. L1 RTOS Interaction entities based on a generic Hub.

course remove all such application-oriented

services and just use the Hub based services. This

has however the drawback that the services loose

their specific semantic richness. E.g. resource

locking clearly expresses that the task enters a

critical section in competition with other tasks.

Also erroneous runtime conditions like raising an

event twice (with loss of the previous event) are

easier to detect at the application level than when

using a generic Hub.

 An unexpected side-effect of the use of

Hub entities, is that the set of services can be

expanded independently of the kernel itself. A Hub

is a generic synchronization entity and the Hub

semantics are determined by the synchronization

predicate and by the predicate function following

successful synchronization. The result is not only

that the RTOS can be made application specific, it

also provides better performance and more safety

as most of the services and the driver code execute

in the application domain, leaving the essential

RTOS functions to a small kernel function.

In the course of the formal modeling we

also discovered weaknesses in the traditional way

priority inheritance is implemented in most RTOS

and we found a way to reduce the total blocking

time. In single processor RTOS systems, this is less

of an issue but in multi-processor systems, all

nodes can originate service requests and resource

locking is a distributed service. Hence the waiting

lists can grow much longer and lower priority tasks

can block higher priority ones while waiting for the

resource. This was solved by postponing the

resource assignment till the rescheduling moment.

Finally, by generalization, also memory

allocation has been approached like a resource

locking service. In combination with the Packet

Pool, this opens new possibilities for a safe and

secure management of memory. E.g. the

OpenComRTOS architecture is free from buffer

overflow by design.

6 Results obtained on real execution targets

We shortly summarize the results

obtained. Although fully written in ANSI-C

(except for the task context switch), the kernel

could be reduced to less than 1 Kbytes single

processor and 2 Kbytes with multi-processor

support (measured on a 16bit Melexis

microcontroller). A sample application with two

tasks and one Port required just 1230 bytes of

program memory and 226 bytes of data memory

(static and dynamic). More information is available

in [4]

7 Formal verification

This project would have been incomplete if we had

not attempted a formal verification of the source

code. In the end this proved to be quite

straightforward because the orthogonal and clean

architecture allowed to check each service using a

similar pattern. Following issues however must be

mentioned:

- We did not find tools and methods that allowed to

verify our asynchronous and concurrent design

(inevitable for a RTOS) at the source code level.

Tools only exist for static and synchronous

programs [9][10]

- It was practically impossible but also unnecessary

to verify the kernel as a whole. Hence we verified

the algorithms for each service class independently.

Given the orthogonality of protocol based

architecture (by using packets), this is sufficient.

- The hardest part remained to find all properties to

check for. A lot of these properties look rather

trivial at first sight and our human brain has a

tendency to overlook them.

- The final issue is related to the programming in C

itself. It is clear that this language is a major source

of errors. Hence, some errors were found at the

programming level that no formal verification

would ever find.

- However, the fact that the formal modeling

helped a lot in achieving such a clean and

orthogonal architecture, verification as well as at

the abstract level by using a formal model checker

as well as at the language level was a lot easier,

because the complexity is minimized and the code

size is much smaller than comparable hand written

code.

8 Future developments and research

Above we already identified the need for

the model checkers to detect the minimal critical

sections. Another area of research is how to

maintain consistency between the formal model

and the implementation. This will require that the

formal model can be used as a reference and

requires that the source is generated rather than

written by the software engineer.

Future OpenComRTOS developments will

focus on adding more safety and security properties

to a SW/HW co-design pair of OpenComRTOS

and processor. Formal modeling should contribute

in identifying minimum architectures that still are

providing safety and security in the resource

constrained domain of deeply embedded systems.

Another area of interest is to find a better

way to separate orthogonally the priority based

scheduling from the logical behavior of the kernel

entities. E.g. the use of priority inheritance support

results in this code being mixed up in the

manipulation of the data structures (e.g. to sort

waiting lists). This makes the code more

convoluted to read and understand while the impact

is only on the timely behavior of the application.

8 Conclusion

The OpenComRTOS project has shown

that even for software domains often associated

with ‘black art’ programming, formal modeling

works very well. The resulting software is not only

very robust and maintainable but also very

performing in size and timings and inherently safer

than standard implementation architectures. Its use

however must be integrated with a global systems

engineering approach as the process of incremental

development and modeling is as important as using

the formal model checker itself. The use of formal

modeling has resulted in many improvements of

the RTOS properties.

Formal modeling and formal verification

have proven to be very powerful engineering tools

and hence it can not be emphasized enough how

many problems in the software world can be

avoided by a systematic use from the very

beginning.

REFERENCES

1. OpenComRTOS architectural design

document on www.OpenLicenseSociety.org

2. TLA+/TLC home page on

http://research.microsoft.com/users/lamport/tla

/tla.html

3. INCOSE www.incose.org

4. Open License Society

www.OpenLicenseSociety.org

5. www.Melexis.com

6. www.verisoft.de

7. www.spin.org

8. www.misra.org

9. Bruno Blanchet, Patrick Cousot, Radhia

Cousot, Jérôme Feret, Laurent Mauborgne,

Antoine Miné, David Monniaux & Xavier

Rival. Design and Implementation of a

Special-Purpose Static Program Analyzer for

Safety-Critical Real-Time Embedded

Software, invited chapter. In The Essence of

Computation: Complexity, Analysis,

Transformation. Essays Dedicated to Neil D.

Jones, T. Mogensen and D.A. Schmidt and

I.H. Sudborough (Editors). Lecture Notes in

Computer Science 2566, pp. 85—108,

Springer. . http://www.astree.ens.fr/

10. Clarke, Edmund and Kroening, Daniel and

Lerda, Flavio, A Tool for Checking {ANSI-C}

Programs, Tools and Algorithms for the

Construction and Analysis of Systems

(TACAS 2004), Springer

http://www.cprover.org/cbmc/

