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Abstract. This paper describes a project to develop a network-centric RTOS from scratch using 

formal methods. The (initial) purposes of the project was to get acquainted with the use of formal 

methods for software engineering and to obtain a trustworthy RTOS as a component for building 

networked embedded systems. The work was done by a small, distributed team that had no prior 

experience on using formal methods and with a small budget. The outcome is that the use of formal 

methods is most useful as an architectural design method, more than as a formal verification of 

software code. The resulting software has many properties that were not anticipated at the beginning 

and would likely not have been achieved without the use of Formal Methods 
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1  Problem statement 

 

Real-Time Operating Systems are an 

essential component in most embedded systems. 

They are essential when the application becomes 

complex and safety critical. They provide a way to 

organize the application in a set of modules that 

interact, the scheduler helps in achieving 

predictable real-time behavior, and they allow the 

application to recover from run-time error 

conditions.  

Nevertheless, almost none of the 

commercial and open source RTOS-es have been 

certified according to standards like IEC61508 or 

DO178. Almost none have been formally verified. 

Part of the reason is historical: RTOSes are fairly 

complex and highly concurrent pieces of software 

that in addition must provide good performance 

with as little as possible resources. Hence, RTOSes 

are often developed by very skilled software 

engineers, but often following a bottom-up 

approach with little documentation, preventing 

even certification. 

Open License Society undertook the 

OpenComRTOS project in 2004 with the aim to 

develop a  novel network-centric RTOS. Formal 

methods were used from the start with much effort 

going into finding the right architecture and being 

able to verify that the software is correct. 

We also noted related work by Iain D. 

Craig [11][12] when this project was finished. This 

work is however rather different. It is mainly 

concerned with the formal specification and 

refinement  of existing Operating Systems. The 

author shows that this is viable. Our work has 

indicated that formal methods provide serious 

benefits as well when used for designing new 

architectures from the very beginning, ven for non-

Figure 1 Open License SE methodology 

 

 



trivial pices of software like  RTOS.. As a result, 

formal verification of the final architecture is also a  

lot more straightforward because it results in a 

much cleaner architecture. 

 

2 Systems (and Software) Engineering 

approach 

 

The Systems Engineering approach developed by  

Open License Society is a classical one as defined 

in [4] but adapted to the needs of embedded 

software development. It is an evolutionary 

iterative process. In such a process, much attention 

is paid to an incremental development requiring 

regular review meetings by several of the 

stakeholders. On the architectural level, the system 

or product under development is defined under the 

paradigm of “Interacting Entities”, which maps 

very well on an RTOS based runtime system. 

When programming with  RTOS, the appliction is 

split over  number of concurrent entities called 

“Tasks”, scheduled in time by the RTOS scheduler. 

The “interact” through RTOS services, essentially 

points of synchronization but with a service 

specific semantic behaviour. In OpenComRTOS 

these services decouple the tasks completely from 

each other. Applied on the development of 

OpenComRTOS, the process was started by 

elaborating a first set of requirements and 

specifications. Next an initial architecture was 

defined. Starting from this point on, two groups 

started to work in parallel. The first group worked 

out an architectural model while a second group 

developed an initial formal model using 

TLA+/TLC [2]. This model was incrementally 

refined.  

At each review meeting between the software 

engineers and the formal modeling engineer, more 

details were added to the model, the model was 

checked for correctness and a new iteration started. 

This process was stopped when the formal model 

was deemed close enough to the implementation 

architecture. Next, a simulation model was 

developed on a PC (using Windows NT as a virtual 

target). This code was then ported to a real 16bit 

microcontroller [5]. On this target a few target 

specific optimizations were performed on the 

implementation, while fully maintaining the design 

and architecture. The software was written in ANSI 

C and verified with a MISRA rule checker. [8] 

Finally the reverse process was undertaken. For 

each service class a formal model was built 

matching the implementation and essential 

properties were verified. 

 

 

3 Lessons from using formal modeling 

 

3.1. Selecting a methodology 

 

Formal techniques basically fall into two 

categories. First we have model checkers:  a model 

of the software is constructed at an abstract level 

and the model checker will basically verify that 

specified properties are never violated and if they 

are a trace of a counter-example will be provided. 

A second class of formal techniques are so-called 

proofing systems. They allow to proof by 

deduction and aided by a computing machine that a 

certain property holds.  

Given that the project started with a clean slate and 

the strong architectural nature of the project we 

opted to use a model checker. It must be noted 

however that model checkers, neither proof 

systems allow to verify just any set of properties. 

E.g. most model checkers are only suitable for 

verifying event triggered systems as e.g. numerical 

properties quickly result in a state space explosion, 

restricting their use to rather small systems. 

Fortunately for an RTOS, this is less of an issue.  

 A first observation is that while there are many 

tools and methods available, most of them are 

based on the same principles. However, many of 

the tools we found are academic and suffer from 

lack of robustness, performance or ease of use, 

clearly indicating that this is still an emerging 

discipline. Also when used by commercial vendors, 

the formal tools are often hidden and do their work 

in the background. This obliterates the need to be 

mathematical proficient and user can stay in the 

problem domain, instead of the math solution 

domain, but no such integration was found that 

applied to our project. 

While we had an initial bias toward using SPIN 

[7], in the end it was decided to use TLA/TLC 

from Leslie Lamport. [2] Although the 

mathematical notation of the TLA language was 

first considered a hindrance versus the C-like 

Promela language of SPIN, in the end this has 

proven to be a major benefit as it forced to reason 

in a much more abstract way about the RTOS. 

 

 

 

 

 

 

 

 

 

 

 



3.2. Why are there no errors? 

 

The initial goal of using formal techniques was to 

be able to prove that the software is correct. This is 

an often heard statement from the formal 

techniques community. A first surprise was that 

each model gave no errors when verified by the 

TLC model checker. This was actually due to the 

iterative nature of the model development process 

and partly its strength. From an initial rather 

abstract model, successive models are developed 

by checking them using the model checker and 

hence each model is correct when the model 

checker finds no illegal states. As such, model 

checkers can’t proof that the software is correct. 

They can only proof that the formal model is 

correct. For a complete proof of the software the 

whole programming chain as well as the target 

hardware should be modeled and verified as well. 

In the ideal case, the software should even be 

generated from the formal models. This is today an 

unachievable result due to its complexity and the 

resulting state space explosion. The model itself 

would be many times larger than the software 

being developed. It indicates however that if we 

would make use of verified target processors and 

verified programming language compilers, the 

model checker becomes practical as limited to 

modeling the application. 

Other issues were discovered in relation to 

the use of formal modeling. E.g. the TLC model 

checker declares every action as a critical section, 

whereas e.g. in the case of a RTOS, many 

components operate concurrently and real-time 

performance dictates that on a real target the 

critical sections are kept as short as possible. While 

this dictates the avoidance of shared data 

structures, it would be helpful to have formal 

model assistance that indicates the required critical 

sections.  

Nevertheless, a major benefit of using the 

model checker has proven to be its abstraction. The 

models developed first in/in the beginning of the 

project had to be discarded after it was clear that 

they reflected how a programmer would write the 

software, often by unconsciously taken 

implementation decisions, resulting in unnecessary 

complexity. Once this was understood, 

(re)developing the models was much more 

straightforward.  

The final issue is the well known problem of state 

space explosion. Just modeling a small 

OpenComRTOS application, the TLC model 

checkers has to examine a few million states, 

exponentially taking more time for every task 

added to the model. This also requires increasing 

amounts of memory and limits the model checking 

to subsets of the whole architecture. However, this 

was not a real issue as the architecture is generic 

and based on  a message passing protocol that is 

independent of the size of the system. The 

algorithmic logic of the RTOS kernel also makes 

no difference between local or remote services, 

making it independent of the topology of the target 

network and hence there was no need to make the 

network topology explicit. 

 

4  A thin boundary between past experience, 

creativity and model checking 

 

For completeness, we need to mention that some of 

the elements of the OpenComRTOS architecture 

were inherited from a previous distributed RTOS 

(Virtuoso [4]) that was developed in a traditional 

way, and with some inspiration from CSP. The 

communication layer of this distributed RTOS used 

packets but the kernel was a large jump table. We 

had also experienced issues with portability and 

scalability. Finally, the third generation of the 

Virtuoso RTOS was loosing performance through 

what we can call “feature bloating”. Nevertheless, 

it was difficult to see how a better architecture 

could be found that would at the same time provide 

improvements in terms of code size, safety, 

security and scalability properties. In addition we 

defined as objective that it should be able to run 

from memory restricted multi-core CPUs to widely 

distributed processing nodes running legacy 

software. 

Formal modeling has helped a lot in formalizing 

the problem and as a result we can claim success 

beyond initial expectations. 

Figure 2 OpenComRTOS-L0 view 



 

5 Novelties in the architecture 

 

OpenComRTOS has a semantically layered 

architecture. At the lowest level (L0) the minimum 

set of entities provides everything that is needed to 

build a small networked real-time application.  

The entities needed are Tasks (having a 

private function and workspace), an interaction 

entity we called an L0_Port to synchronize and 

communicate between the Tasks. Ports act like 

channels in the tradition of Hoare’s CSP but allow 

multiple waiters and asynchronous communication.  

One of the tasks is a kernel task scheduling the 

tasks in order of priority and managing and 

providing Port based services.  Driver tasks handle 

inter-node communication. Pre-allocated as well as 

dynamically allocated packets are used as a carrier 

for all activities in the RTOS such as: service 

requests to the kernel, Port synchronization, data-

communication, etc. Each Packet has a fixed size 

header and data payload with a user defined but 

global data size. This significantly simplifies the 

management of the Packets, in particular at the 

communication layer. A router function also 

transparently forwards packets in order of priority 

between the nodes in a network.   

OpenComRTOS L0 therefore is a 

distributed, scalable and network-centric operating 

systems consisting of a packet-switching 

communication layer with a scheduler and port-

based synchronization. This architecture has 

proven to be very efficient. E.g. a minimum single 

processor kernel can have a code size of less than 1 

Kbyte, with 2 Kbytes for the multi-processor 

version. 

In the next semantic level (L1) services 

and entities were added as found in most RTOS:  

Boolean events, counting semaphores, FIFO 

queues, resources, memory pools, mailboxes, etc. 

The formal modeling has allowed defining all such 

entities as semantic variants of a common and 

generic entity type. We called this generic entity a 

“Hub”.  In addition, the formal modeling also 

helped to define “clean” semantics for such 

services whereas ad-hoc implementations often 

have side-effects. 

 As the use of a single generic entity 

allowed a much greater reuse of code, the resulting 

code size is about 10 times less than for an RTOS 

with a more traditional architecture. One could of 

 

Fig 4. L1 RTOS Interaction entities based on a generic Hub. 



course remove all such application-oriented 

services and just use the Hub based services. This 

has however the drawback that the services loose 

their specific semantic richness. E.g. resource 

locking clearly expresses that the task enters a 

critical section in competition with other tasks. 

Also erroneous runtime conditions like raising an 

event twice (with loss of the previous event) are 

easier to detect at the application level than when 

using a generic Hub. 

 An unexpected side-effect of the use of 

Hub entities, is that the set of services can be 

expanded independently of the kernel itself. A Hub 

is a generic synchronization entity and the Hub 

semantics are determined by the synchronization 

predicate and by the predicate function following 

successful synchronization. The result is not only 

that the RTOS can be made application specific, it 

also provides better performance and more safety 

as most of the services and the driver code execute 

in the application domain, leaving the essential 

RTOS functions to a small kernel function. 

In the course of the formal modeling we 

also discovered weaknesses in the traditional way 

priority inheritance is implemented in most RTOS 

and we found a way to reduce the total blocking 

time. In single processor RTOS systems, this is less 

of an issue but in multi-processor systems, all 

nodes can originate service requests and resource 

locking is a distributed service. Hence the waiting 

lists can grow much longer and lower priority tasks 

can block higher priority ones while waiting for the 

resource. This was solved by postponing the 

resource assignment till the rescheduling moment. 

Finally, by generalization, also memory 

allocation has been approached like a resource 

locking service. In combination with the Packet 

Pool, this opens new possibilities for a safe and 

secure management of memory. E.g. the 

OpenComRTOS architecture is free from buffer 

overflow by design. 

 

6 Results obtained on real execution targets 

 

We shortly summarize the results 

obtained. Although fully written in ANSI-C 

(except for the task context switch), the kernel 

could be reduced to less than 1 Kbytes single 

processor and 2 Kbytes with multi-processor 

support (measured on a 16bit Melexis 

microcontroller). A sample application with two 

tasks and one Port required just 1230 bytes of 

program memory and 226 bytes of data memory 

(static and dynamic). More information is available 

in [ 4] 

 

7 Formal verification 

 

This project would have been incomplete if we had 

not attempted a formal verification of the source 

code. In the end this proved to be quite 

straightforward because the orthogonal and clean 

architecture allowed to check each service using a 

similar pattern. Following issues however must be 

mentioned: 

- We did not find tools and methods that allowed to 

verify our asynchronous and concurrent design 

(inevitable for a RTOS) at the source code level. 

Tools only exist for static and synchronous 

programs [9][10] 

- It was practically impossible but also unnecessary 

to verify the kernel as a whole. Hence we verified 

the algorithms for each service class independently. 

Given the orthogonality of protocol based 

architecture (by using packets), this is sufficient. 

- The hardest part remained to find all properties to 

check for. A lot of these properties look rather 

trivial at first sight and our human brain has a 

tendency to overlook them. 

- The final issue is related to the programming in C 

itself. It is clear that this language is a major source 

of errors. Hence, some errors were found at the 

programming level that no formal verification 

would ever find. 

- However, the fact that the formal modeling 

helped a lot in achieving such a clean and 

orthogonal architecture, verification as well as at 

the abstract level by using a formal model checker 

as well as at the language level was a lot easier, 

because the complexity is minimized and the code 

size is much smaller than comparable hand written 

code. 

 

8 Future developments and research 

 

Above we already identified the need for 

the model checkers to detect the minimal critical 

sections. Another area of research is how to 

maintain consistency between the formal model 

and the implementation. This will require that the 

formal model can be used as a reference and 

requires that the source is generated rather than 

written by the software engineer.  

Future OpenComRTOS developments will 

focus on adding more safety and security properties 

to a SW/HW co-design pair of OpenComRTOS 

and processor. Formal modeling should contribute 

in identifying minimum architectures that still are 

providing safety and security in the resource 

constrained domain of deeply embedded systems. 

Another area of interest is to find a better 

way to separate orthogonally the priority based 



scheduling from the logical behavior of the kernel 

entities. E.g. the use of priority inheritance support 

results in this code being mixed up in the 

manipulation of the data structures (e.g. to sort 

waiting lists). This makes the code more 

convoluted to read and understand while the impact 

is only on the timely behavior of the application. 

 

8  Conclusion 

 

The OpenComRTOS project has shown 

that even for software domains often associated 

with ‘black art’ programming, formal modeling 

works very well. The resulting software is not only 

very robust and maintainable but also very 

performing in size and timings and inherently safer 

than standard implementation architectures. Its use 

however must be integrated with a global systems 

engineering approach as the process of incremental 

development and modeling is as important as using 

the formal model checker itself. The use of formal 

modeling has resulted in many improvements of 

the RTOS properties. 

Formal modeling and formal verification 

have proven to be very powerful engineering tools 

and hence it can not be emphasized enough how 

many problems in the software world can be 

avoided by a systematic use from the very 

beginning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

 

1. OpenComRTOS architectural design 

document on www.OpenLicenseSociety.org 

2. TLA+/TLC home page on 

http://research.microsoft.com/users/lamport/tla

/tla.html  

3. INCOSE www.incose.org 

4. Open License Society 

www.OpenLicenseSociety.org  

5. www.Melexis.com  

6. www.verisoft.de  

7. www.spin.org  

8. www.misra.org 

9. Bruno Blanchet, Patrick Cousot, Radhia 

Cousot, Jérôme Feret, Laurent Mauborgne, 

Antoine Miné, David Monniaux & Xavier 

Rival. Design and Implementation of a 

Special-Purpose Static Program Analyzer for 

Safety-Critical Real-Time Embedded 

Software, invited chapter. In The Essence of 

Computation: Complexity, Analysis, 

Transformation. Essays Dedicated to Neil D. 

Jones, T. Mogensen and D.A. Schmidt and 

I.H. Sudborough (Editors). Lecture Notes in 

Computer Science 2566, pp. 85—108, 

Springer. . http://www.astree.ens.fr/ 

10. Clarke, Edmund and Kroening, Daniel and 

Lerda, Flavio, A Tool for Checking {ANSI-C} 

Programs, Tools and Algorithms for the 

Construction and Analysis of Systems 

(TACAS 2004), Springer 

http://www.cprover.org/cbmc/ 


