
Trustworthy Forever

From Deep Space To Deep Sea

History goes back to 1989 (Eonic Systems)

VIRTUOSO parallel RTOS (T800, C40, C6x, 2016x, TS102,
G4, …) – CSP based

Used from 1 CPU to 1600 DSPs (sonar, radar) to
12000 nodes (heterogeneous)

Acquired by Wind River Systems in 2001

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 2

Acquired by Wind River Systems in 2001

Altreonic: created as spin-off in 2008 following R&D

Unified systems engineering (GoedelWorks)

Formalised when possible

Network-centric OpenComRTOS:

Used as test case for use of formal techniques

Binary/source and Open Technology License model

Computation to communication ratio:

Depends on application

Input rate = output rate = ½ computation rate ideal

Ideal ratio = 1, typically minimum 5 to 10

Data communication is bottleneck:

Set-up latency, no polling

Task to task/memory to memory bandwidth is real target

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 3

Task to task/memory to memory bandwidth is real target

Concurrency to mask communication latencies

DMA => requires additional busses

Data protection:

Pointers are fast but very dangerous

memcpy has no distributed semantics! (should be _W)

Heterogeneous many-cores: data-types

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 4

Novel programming model, but long formal
history (Hoare’s CSP, 1975)

Use of TLA+/TLC for design and verification

Unexpected result:

10X smaller code size;

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 5

10X smaller code size;

Easy to Port to new
Platforms;

Low amount of assembly;

Network-centric (RT)OS, MP by default:

Concurrency at the core (“Interacting Entities”);

Pragmatic superset of CSP (Hoare);

Scalable yet very small: typically 2 to 5 kiB/node;

Real-time communication as system level service;

Unique support for distributed priority inheritance;

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 6

Unique support for distributed priority inheritance;

Heterogeneous target /communication support;

Integrate seamlessly “legacy OS” nodes;

Virtual Single Processor model;

Visual modeling/ programming with code generators;

Capable of fault-tolerance and resource management.

Basis:

RMA => priority based, preemptive

Additional: timer based

Everything is priority ordered

e.g. waiting lists

Packet based communication

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 7

Packet based communication

Priority Inheritance support with ceiling level

Single processor

Unique distributed implementation

The Generic Hub as metamodel

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 8

Similar to a Guarded Atomic Action, or a pragmatic superset of CSP

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 9

Hub Entity Semantics

Event Synchronisation on boolean event, N to N

Semaphore Synchronisation with counter for async signalling, N to N

Port Synchronisation with exchange of Packet, N to N

FIFO queue Buffered, async communication, except on FIFO full or empty, N to N

Resource Logical resource to guard critical section (with priority inheritance)

Memory pool Linked list of memory blocks

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 10

Memory pool Linked list of memory blocks

Synchronisation Semantics

_NW Non waiting => returns immediately

_W Waiting until synchronisation (blocking)

_WT Waiting with a TimeOut.

OpenComRTOS Designer, for Modeling:

Topology Diagram, defines the Hardware Setup

Application Diagram, defines the Entities and their
Interactions

Source Code, defines the sequential parts.

Code Generators: Generate the configuration

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 11

Code Generators: Generate the configuration
for OpenComRTOS from the Models

OpenComRTOS: Runtime Layer providing the
Interacting Entities.

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 12

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 13

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 14

• Up to 10x smaller than traditional design (thanks to formal

development)

• Less power, less memory, easier to verify, scalable ...

CPU Type Codesize

ARM-Cortex-M3 2.5 – 4.0 kB

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 15

Code size figures (in Bytes) obtained for our different ports, -Os

Dormant ports: MLX16 (2K), Xilinx MB (5K), Leon3 (5K), CoolFlux DSP (2K)

XMOS-XS1 5.0 – 7.5 kB

PowerPC e600 7.1 – 9.8 kB

TI-C6678x (8 core DSP) 5.1 – 7.7 kB

Intel-SCC (48 Pentium cores) 4.3 – 5 kB

Comparing Intel 48-core SCC and

TI 8-core TMS320C6678

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 16

TI 8-core TMS320C6678

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 17

• L1 cache: 16 KB

• L2 cache: 256 KB

• RTOS kernel on each core

• Communication using memory of MPB (16 KB)

• “RoC“ (Rack On a chip)

• Hierarchical Interrupt

Routing up to 1000 possible

interrupts per core!

• One Kernel Instance per

core

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 18

core

• Program and data in L2

(SRAM) cache

• No DMA for these tests

• DMA added later

Two Types of Latencies:

IRQ to ISR

IRQ to Task

Measured by using an automatic reload counter
as Interrupt Source (IRQ).

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 19

Application Diagram:

Intel-SCC

(533 MHz)

TI-C6678

(1 GHz)

ARM-M3

(50 MHz)

IRQ to ISR 349 cycles 136 cycles 15 cycles

IRQ to Task 5501 cycles 1367 cycles 600 cycles

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 20

ARM-Cortex-M3 used as reference

IRQ to Task 5501 cycles 1367 cycles 600 cycles

Maximum Interrupts

per second to ISR
1,527,221 7,352,941 3,333,333

Maximum Interrupts

per second to Task
96,891 731,529 83,333

MLX16 uBlaze Leon3 ARM-M3 XMOS TI-C6678 Intel-SCC

L1_Hub 400 4756 4904 2192 4854 5104 4321

L1_Port 4 8 8 4 4 8 7

L1_Event 70 88 72 36 54 92 55

L1_Semaphore 54 92 96 40 64 84 64

L1_Resource 104 96 76 40 50 144 121

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 21

L1_Resource 104 96 76 40 50 144 121

L1_FIFO 232 356 332 140 222 300 191

L1_PacketPool -- 296 268 120 166 176 194

All L1 services 1048 5692 5756 2572 5414 5908 4953

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 22

Tasks and semaphore on same node

Good measure of kernel overhead

One loop

= 4 context switches + 4 service requests

Clock Freq Context Size Memory

location

Loop time

microsecs

Loop Time

cycles

ARM M3 50 MHz 16x32 internal 52.5 2625

NXP CoolFlux -- 70x24 Internal -- 3826

XMOS 100 MHz 14x32 Internal 26.8 2680

Leon3 40 MHz 32x32 Internal 136.1 5444

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 23

MLX-16 6 MHz 4x16 Internal 100.8 605

MicroBlaze 100 MHz 32x32 internal 33.6 3360

TI-C6678 1000 MHz 15x32 L2-SRAM 4.5 4500

Intel SCC 533 MHz 11x32 external 4.9 2612

MPB treated as a FIFO, any Core can write to
them.

Atomic Variables used as locks.

Operation:

1. Acquire the Lock for the MPB to write to;

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 24

1. Acquire the Lock for the MPB to write to;

2. Write the Message to the MPB;

3. Release the Lock;

4. Trigger LINT0 on the receiving Core.

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 25

Tasks and semaphore on different nodes

Good measure of overhead of kernel + drivers +
communication latency

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 26

Extra delay due to TX and RX drivers +
communication latency over MPB memory

Uses OpenComRTOS packet switching

Task synchronise first in Port Hub (=> ACK)

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 27

Task synchronise first in Port Hub (=> ACK)

Data copied from send packet to receive packet
in Port Hub

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 28

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 29

When utilising the experimental driver for the EDMA3

peripherals of the TI-C6678, and EDMA3 unit

EMDA3CC0, we achieve a throughput of 4041 MB/s

with a buffer size of 128 KBytes, transferred between

two buffers in the L2-SRAM of core 0.

The advantage of using the DMA unit over using the

CPU for copying or moving data is that during the

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 30

Uses a Device Driver Hub to interface to the
EDMA3 Unit (new concept).

CPU for copying or moving data is that during the

transfer the CPU can perform other tasks, thus the

transfer happens in parallel to the processing.

GRAPH?

Getting best and predictable real-time
performance on modern multi-core is complex:

Documentation barrier + hardware complexity

Wait states => latencies

Cache flushing adds extra overhead

Node and memory mapping dependent performance

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 31

Node and memory mapping dependent performance

Shared busses = shared resources = extra latency

Best options: Keep It Simple and Smart:

Nice to have features cost memory and cycles

Shared resources to be avoided

Best is point-to-point + DMA

Integration of the Intel-SCC port into
OpenComRTOS Designer:

Code generators and platform meta-models

Device Drivers

Optimizations of the TI-C6678 Port

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 32

Further simplifications of the EDMA3 device driver;

Code generators;

SoC and Board support packages

QoS based resource scheduling (Artemis
CRAFTERS project)

bernhard.sputh (@) altreonic.com

eric.verhulst (@) altreonic.com

20-Jul-12 Altreonic NV – From Deep Space to Deep Sea - 33

eric.verhulst (@) altreonic.com

Thanks for your attention

