
Beyond modeling: let the system
meet the specifications

Trustworthy Forever

From Deep Space to Deep Sea

www.altreonic.com
eric.verhulst (@) altreonic.com

Content

• What are „Models“ ?

• Systems, safety and other properties

• Models and processes• Models and processes

• Why it pays off

• The human factor: Maturity of an organisation

• Conclusion

24/04/2011 2

Abstract

While modeling is an important step forward in getting software right, it is
often thought to be a sufficient condition. The role of modeling is to verify
that a specific implementation is feasible. Different types of models are
needed. The implementation itself is to be seen as a model as well. To
get it right, the process needs to start at the requirements level, even
before any model is being considered.
An important aspect of modeling approaches is that they introduce the
concept of meta-levels. This allows to reason at a more abstract level. concept of meta-levels. This allows to reason at a more abstract level.
The challenge is that different views need to be combined, in particular
the development or design view and the process view. While these views
are often seen as separate activities, in practice they are very much
connected because engineering is also team work executed by humans.
In the presentation we will show how a rigorous systems/software
engineering approach can be combined with an agile process that takes
both views into account.

24/04/2011 3

The safe car that doesn’t move

is a model!

24/04/2011 4

Ceci n’est pas un car!

What is a model?

Wittgenstein (in “Philosophical Grammar” 65 years ago)

“A blueprint serves as a picture of the object which the
workman is to make from it.

… for the builder or the engineer, the blueprint is used as an
instruction or rule dictating how he should construct the
building or machine. And if what he makes deviates from the building or machine. And if what he makes deviates from the
blueprint, then he has erred, built incorrectly en must try again.”

… What we may call ‘picture’ is the blueprint together with the
method of its application”.

Wittgenstein defined Systems Engineering

before the term even existed.

24/04/2011 5

Why models?

• Language is not just about syntax, it is about semantics as
perceived and used by humans. Language is fuzzy.

• Models help to reason and communicate .

• Therefore models are about language and exist in different
variants depending on the view and domain (meaning in
language is context dependent)language is context dependent)

• What is it that we want to build?

• How do we want to build it?

• What is the link between the “what” and the “how”?

• Building the right thing

• Building the thing right

24/04/2011 6

What did Wittgenstein really say?

• A model is a projected view

• A model assumes a methodology

• We can only faithfully make the transition from model to
system, if the model is complete

also the implementation is a model

• We can only faithfully generate the implementation, if we
have a completely defined mapping between the model(s) as
a set of projected views and the selected implementation.

• Therefore: Models and Process are strongly linked .

• The issue: both are actually very large state spaces!

mastering the complexity is the challenge!

24/04/2011 7

What system?

Any system is part of a larger system

Stake Holders as a system

24/04/2011

System under
development or

under
consideration

Operator or
Controlling

system

Environment as a System

8

What system properties?

Any system has to meet different, often conflicting properties :
• Cost price
• Energy use
• Safety
• Security
• Size
• Ease of use
• Designed for “production”

24/04/2011

• Designed for “production”
• Must be produced by company X
• Designed to meet the requirements of the target market
• Life-cycle cost
• ….

Trade-offs
All properties are related
The best technical solution is not necessarily the one selected

9

From a safety goal to a view of Trust

• Historical:
• Concept that is related to the loss of lives due to a

malfunctioning of the system. Post factum: what went wrong?
•The right safety view:

• Safety is an emerging system property resulting fro m a
quality engineering process

• Reliability is a pre-condition, but not sufficient condition
• Safety can be improved by using feedback

24/04/2011

• Safety can be improved by using feedback
• Bottom line: do users trust the system/ product ?

• The expanded view: Trustworthiness =
• Safety : preventing damage or the loss of lives due to

unintentional failures or malfunctioning parts +
• Security : preventing damage or the loss of lives due to

maliciously injected failures or malfunctions +
• Useability : preventing damage or the loss of lives due to

improper operator interfaces +
• Privacy : preventing loss or misuse of personal data.

10

Safety, reliability, predictability

“Safety and reliability are different properties. One
does not imply nor require the other : A system can
be reliable but unsafe. It can also be safe but
unreliable. In some cases, these two properties
even conflict, that is, making the system safer may
decrease reliability and enhancing reliability may decrease reliability and enhancing reliability may
decrease safety.”

(src: Nancy Leveson, Engineering a Safer World)

Predictability is a higher level property of any other
property. It reflects our control of the engineering
process.

24/04/2011 11

Example of safety case

Risk of injury.
Under certain circumstances, due to a software issue, the
product can unexpectedly apply reverse torque to the wheels,
which can result in a rider falling and potentially suffering
injuries. That this can occur in two situations: during a safety
shutdown of the product, or when the rider exceeds the
programmed speed limit. programmed speed limit.

Both situations involve specific sequences of events under
narrow timeframes, and require that the handlebar be tilted
back by the speed limiter and the rider come off and then
back onto the rider detect switches on the riding platform
within a short period of time combined with a traction control
event. At least 6 incidents have been reported resulting in
injuries to the head and wrist of users.

src: http://ec.europa.eu/consumers/dyna/rapex/rapex_archives_en.cfm
24/04/2011 12

Is safety absolute?

1. Safety can never be absolute:
• Always residual errors
• Always residual risks
• Design is always trade-off.

2. Safety is a statistical property:
• Mean Time To Failure is what matters for malfuntions

=> mean time to safety hazards
• If MTTF >> life time, mainly external factors remain:

• Operator

24/04/2011

• Operator
• Environment

3. Safety level must be selected on the basis of acc eptable risks
• Has a cost tag (insurance) attached to it
• Safety Integrity Level 3 (SIL3)

• Fail-safe mode, but still safety hazard
• Safety Integrity Level 4 (SIL4)

• Fault tolerant, but still residual risks
• Common mode failures
• Common design mistakes

A safety hazard can still happen ANY time!
Most people are optimistic and then become negligen t

13

Models as part of the Process

24/04/2011 14

How is certification reached?

1. Follow a formalised (safety) engineering process
• Compatible with safety standards (often domain specific)
• Organisation must be set up for it: mindset issue!
• A good flow is iterative

• Step1:
• Requirements capturing
• Many stakeholders, nice-to-haves, must haves
• Normal case, Fault cases, Test cases

• Step2:

24/04/2011

• Step2:
• Select requirements and write up specifications

• Step3:
• Model : (virtual) prototypes, simulations, formal models

of critical properties, implementation models
• Step4:

• Verify the process
• Test against specifications
• Integrate and validate against requirements

2. Release
3. Certify

15

Why a unified and formalised approach is needed

• Many stakeholders:
• Political
• Financial
• Marketing
• Engineering
• Users

• Many domains => many domain-specific languages
• Requires unified semantics (“ontology”)

24/04/2011

• Requires unified semantics (“ontology”)
• Even in the technical domain!

• If no clear and common understanding is reached, there will be too
many conflicting requirements, misunderstood requirements and
hence the system will have hidden flaws.
• Selecting the right system is the first step to dev elop it right.
• This work has to be done up front.

• This is also the cheapest phase for correcting mistakes
• The further in the process, the more expensive
• Risk of stopped projects
• Risk of run-way costs

16

IT Project Success ratio

53%

46%
49%

51%
53%

46%
44%

40%40%

50%

60%

Standish Group’s Chaos Reports

IT projects current scenario:
Continuous low % of
successful projects
worldwide.

17

16%

27% 26%
28%

34%

29%

35%
32%33%

31%

40%

28%

23%

15%
18% 19%

24%

0%

10%

20%

30%

40%

1994 1996 1998 2000 2002 2004 2006 2009

Successful

Challenged

Failed

Successful – delivered on-time, on-budget, on-quality and on-scope
Challenged – at least one element failed
Failed – project canceled

CMMI: levels of maturity

Process
Management

Process
Management

Organization
Process Focus
Organization

Process Focus

Project
Management

Project
Management

Project Planning

Development
Engineering
Development
Engineering

Requirements
Definition

Requirements
Definition

Supporting
Processes
Supporting
Processes

Configuration
Management

Organization
Process Definition

Organization
Process Definition

Organization
Training

Organization
Training

Organization
Process

Performance

Organization
Process

Performance

Organizational
Process

Performance

Organizational
Process

Performance

Project Monitoring
and Control

Supplier Agreement
Management

Requirements
Management

Risk ManagementRisk Management

Integrated Project
Management

Integrated Project
Management

Quantitative Project
Management

Quantitative Project
Management

Technical SolutionTechnical Solution

Product IntegrationProduct Integration

VerificationVerification

ValidationValidation

Management

Process and Product
Quality Assurance

Measurement and
Analysis

Decision Analysis
and Resolution

Decision Analysis
and Resolution

Causal Analysis and
Resolution

Causal Analysis and
Resolution

Level 2

Level 3

Level 4

Level 5

18

The impact of electronics and software

- Why electronics and software?

- Programmable => easy to change => also risk

- Cheap, small

- Allow more sophisticated functionality

- Modern planes can’t fly anymore without

- Also key for lower energy and cleaner operation- Also key for lower energy and cleaner operation

- BUT:

- Mechanical predecessors fail gracefully in the continuous domain

- Electronic and software are clocked in the discrete domain

- Fail within one clock cycle (typically 20 nanoseconds)

- State space is huge (100 millions of states) because of data
dependencies (1 integer = 2**32 states)

- 10E-23 bit error rates => bit error becomes a certainty with time

24/04/2011 19

The impact of complexity
- More functionality:

- => complexity increases

- => state space explodes exponentially

- More dynamic behaviour means more complexity :

- Feedback loops needed to guarantee stability

- Creates however difficult to find transition states between modes

- Clearly an issue with Toyota Prius: older models have no issues, latest
issues seem to be related to interplay of more advanced features like dual
engine, ABS + ESP, regenerative braking, rough road, etc.

- But, where does the complexity come from?

- Reusing old “proven in use” architectures (with layers of corrections)?

- Or rather Layering of complexity?

- Conclusion : tackle complexity (and get safety) by cleaner architecture

- Validate design and verify using formal approaches
24/04/2011 20

20,000 postal mails lost per hour

Unsuitable tap water during 15 min per
day

5,000 bad surgeries per week

Two troubled landings per day

7 lost per hour

Unsuitable tap water during 1 minute
every 7 months

1,7 bad surgeries per week

One troubled landing every 5 years

99,0 % 99,9997 %

3σ vs 6σ

Two troubled landings per day

200.000 wrong persciptions per year

Electricity outage for 7 hours per month

One troubled landing every 5 years

68 wrong perscriptions per year

1 hour electricity outage every 34 years

Only 3,4 defects per million68,200 defects per million

21

Data from 1 year samples recorded in the USA Src: Critical Sofware

Benefits and Impact of CMMI

Area
Average

improvement

Costs 20%

Schedules 37%

Produtivity 67%

Quality 50%

Customer Satisfaction 14%

Return Of Investment (ROI) 4.8 : 1

(sample size: 25 organizations)
Src: SEI – Software Engineering Institute

22

Fixing up-front is cost-efficient!

• Finding and removing a nice to have requirement
cost almost nothing

• Having to recall the product can cost billions

23

Src: Critical Sofwarehttp://www.cdi-its.com/Pages/Quality_Management.aspx

The biggest gain: the architecture

• Complexity is the enemy
• KISS: Keep It Simple but Smart

• If a solution is complex, it means the problem is not well understood.
• Simple solutions require a lot of thinking first.

• Technical notion of “elegance”: where engineering becomes an art.
• Examples:

• NASA 1 million dollar space pen vs. 1 euro russian pencil
• Harrison’s (1693-1776) time-keepers allowing navigation on sea:

• “It has to be practical ” => small and simple

24/04/2011

• Besides saving many lives, it made the British Empire possible.

24

Example: the OpenComRTOS project

- Original set-up:

- How can we use formal methods to verify software?

- Redevelop from scratch a distributed RTOS

- We used TLA+/TLC for formal modeling and
following a process manuallyfollowing a process manually

- Results:

- 6 months learning formal techniques, 12 months
modeling, 2 weeks for running first code

- Code size 10x smaller (5 kiBytes/node)

- Much more scalable: heterogeneous

(see www.altreonic.com)
24/04/2011 25

Some conclusions

• Systems must become TRUSTWORHTY
• Safety : system operates as specified, always

• Failures mitigation by redundancy
• Security : integrity of system is assured

• Freedom of maliciously induced failures
• Useability :

• The user/operator/environment is part of the system
• What were his intentions ?

24/04/2011

• What were his intentions ?

• How can we keep the system simple while increasing ROI (more
functionality, more active safety features, less energy consumption, …)

• The key is a formalised process, modelling helps

• But pre-condition is the maturity of the organisation

• The root cause is always the Human Factor !

26

Thank You for your attention

“If it doesn't work, it must be art.
If it does, it was real engineering”

24/04/2011 27

