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Preface

This booklet is the third in the Godel* Series, with the subtitle "Systems Engineering
for Smarties". The aim of this series is to explain in an accessible way some important
aspects of trustworthy systems engineering with each booklet covering a specific
domain.

The first publication is entitled "Trustworthy Systems Engineering with
GoedelWorks" and explains the high level framework Altreonic applies to the domain
of systems engineering. It discusses a generic model that applies to any process and
project development. It explains the 16 necessary but sufficient concepts. This model
was applied to the import of the project flow of the ASIL (Automotive Safety Integrity
Level) project of Flanders's Drive whereby a common process was developed based
on the IEC-61508, IEC-62061, ISO-DIS-26262, 1SO-13849, ISO-DIS-25119 and ISO-
15998 safety standards covering the automotive on-highway, off-highway and
machinery domain.

The second publication is entitled “QoS and Real Time Requirements for Embedded
Many- and Multicore Systems”. It explains the principles behind real-time scheduling
for embedded real-time systems whereby meeting the real-time constraints often is
a top level safety requirement. What distinguishes this booklet is that it also deals
with systems that have multiple processors (on-chip or connected over a network).
The complexity and challenges on such targets mean that the system must now
schedule all available resources, such as communication backbones, peripherals and
energy. In combination with new functional needs this results in new approaches
focusing on the Quality of Service and requiring specific support from the hardware.

This third publication was written as an application note and shows how
OpenComRTOS Designer can be used as a simulation as well as a development
environment while keeping the source code. This is achieved by way of the
transparent programing model that allows considering a network of processors as a
virtual single processor one. The application note applies it to the development of a
skid steering controller.

The name of Godel (as in GoedelWorks) was chosen because Kurt Godel's theorems
have fundamentally altered the way mathematics and logic was approached, now
almost 80 years ago. The attentive reader will also recognise Heisenberg, Einstein
and Wittgenstein on the front page. What all these great thinkers really did was to
create clarity in something that looked very complex. And while it required a lot of
hard thinking on their side, it resulted in a very concise and elegant theorem or
formula. One can even say that any domain or subject that still looks complex is
really a problem domain that is not yet fully understood. We hope to achieve



something similar, be it less revolutionary, for the systems engineering domain and
it's always good to have intellectual beacons to provide guidance.

The Godel Series publications are freely downloadable from our web site. Further
titles in the planning will cover topics of Real-Time programming, Formal Methods
and Safety Analysis methods. Copying of content is freely permitted provided the
source is referenced. As these booklets will be updated based on feedback from our
readers, feel free to contact us at goedelseries @ altreonic.com.

Eric Verhulst,
CEO/CTO Altreonic NV

*. pronunciation ['kost 'gg:dal] (4 listen)
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Abstract

This technical note serves to demonstrate how Altreonic's OpenComRTOS Designer
allows for embedded software developers of heterogeneous distributed systems to
cross develop and simulate their application on a PC environment and seamlessly
transfer their code to the target hardware. To this end a Microsemi SmartFusion2
SOC Evaluation Kit is utilised as the target hardware for a hub motor skid steering
based speed controller of an Electric Personal Mobility Device (EPMD).

1 INTRODUCTION

It is evident that the current trend in the real-time embedded systems domain is the
proliferation of multiprocessor designs. Multiprocessor designs bring with it many
advantages but also introduces several challenges. In many development projects the
software and hardware design is done concurrently and therefore requires the
embedded software engineers to commence with software design prior to the
hardware being finalized. In theory such a concurrent approach reduces
development time and is therefore a potential cost saver. However, if the software
development environment does not facilitate for the software to be developed such
that it can be functionally verified and at the same time be easily ported to the target
hardware, the potential time savings can be easily lost during hardware-software
integration.

Altreonic's OpenComRTOS Designer with its Visual Modeling and Simulation
Environment, named Visual Designer, allows to cross develop OpenComRTOS
applications on a PC, develop a simulator and generate the runtime code for the
target hardware with minimal or no source code modifications. [6], [7]. This
capability of Visual Designer does not only alleviate schedule related issues of typical
concurrent engineering projects but also facilitates a systematic software
development process which results in improved software quality.

This technical note demonstrates the software development approach for an
application which entails a speed controller for a skid steering based Electric Personal
Mobility Device. The approach commences with the architectural design and
functional verification of the application from within Visual Designer on a PC
environment. Once the functional verification yields acceptable results part of the
application will be transferred to the target hardware for integration with the actual
motor controller and motor.



2 SKID STEERING

Skid steering is a steering technique often used on differential drive systems such as
wheeled or tracked robot platforms as well as vehicles such as excavators and
bulldozers. This method generates differential velocity at opposite sides of the
vehicle in order to turn a vehicle with non-steerable wheels or tracks. Figure 1
illustrates this concept for the case of a tracked robot platform [1].

SKID STEER DRIVE

ROBOT

FORWARD
ISHIATE
FORWARD

¥
LEFT REVERSE ROBOT
RIGHT FORWARD TURNS LEFT

:
DRIVE FORWARD

Figure 1: Tracked Robot Platform Skid Steering

In its simplest form the effective turning radius is therefore a function of the
difference in velocity of the left vs right wheels. Figure 2 below illustrates the
relationship of the difference in velocity to the turning radius [1]:
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Figure 2: Relation between differential velocity and turning radius
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The desired turning radius, Rgesired, can therefore be expressed as follows:

~
+
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However, it is evident that the more accurately the torque applied to each wheel can
be controlled the better the steer mechanism will perform. Such accurate torque
control is arguably best achieved through the use of motorized wheels, also known
as hub-motors. The increased availability of hub-motors holds many advantages for
the development and proliferation of electrical vehicles. Not only do they enable the
design of higher performance skid steer systems but also permit packaging flexibility
by eliminating the central drive motor and the associated drive line and transmission.

3 EPMD SPEED CONTROLLER HARDWARE

Figure 3 below depicts the functional block diagram of the steering controller of the
EPMD.

FU4 FUS FUG
X MOTOR HUB
FU1 FU3 /—> PWM DAC > CONTROLLER > OTOR [LEFT FRONT WHEEL]
STEERING
SENSOR _\
MOTOR HUB
, > >
_——>| PWMDAC CONTROLLER MOTOR [LEFT REAR WHEEL]
CENTRAL CONTROL UNIT
FU2 I X MOTOR HUB
PVM DAC > CONTROLLER > moToR [RIGHT FRONT WHEEL]
THROTTLE A7
SENSOR
\_, X MOTOR HUB
PWM DAC > CONTROLLER > oToR [RIGHT REAR WHEEL]

Figure 3: EPMD Steering Control Functional Block Diagram

The following is a brief description of the functional units indicated in Figure 3:

® FU1 - Steering Sensor: This unit is responsible for sensing the steering command
issued by the operator.

® FU2 - Throttle Sensor: This unit is responsible for sensing the speed command
issued by the operator.

® FU3 - Central Control Unit: This unit is responsible for processing the sensor
inputs and calculating the required speed command for each of the Hub motors.

® FU4 - PWM DAC: This unit is responsible for converting the Pulse Width
Modulated signal from the CCU to an analog voltage in accordance with the
input requirements of the Motor Controller.



® FU5 - Motor Controller: This unit is a COTS motor controller component
responsible for commutating the BLDC Hub motor.
® FUG6 - Hub Motor: This unit is a COTS BLDC Hub Motor

The required functional behaviour of the steering control system can be described as
follows: FU3 receives a throttle command from FU2 and a steering command from
FU1. FU3 calculates a "delta" speed command that is to be added or substracted to
the current nominal command of each Hub motor. The delta speed command is a
function of the current system speed so as to prevent a turning radius that will cause
the system to topple over. The updated speed command for each Hub motor is then
issued to the motor controller. The speed command from FU3 is in the form of a
Pulse Width Modulated signal which is converted to the appropriate analog voltage
by FU4. FUS receives the speed command voltage from FU4 and updates the
commutation speed of the FU5 with Hall-Effect sensors providing the feedback of the
actual motor speed. Figure 4 below depicts this behaviour in the form of flowchart.
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Figure 4: Functional Behaviour of the Steering Controller

For the purposes of this technical note FU1 and FU2 will be implemented in software
(simulators) whereas FU3 - FU6 of the front-left wheel will be implemented in actual
hardware.
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3.1 Central Control Unit
The central control unit will be realised by utilising a SmartFusion2 Starter Kit from
Emcraft Systems [4].

Figure 5: SmartFusion2 Starter Kit

The SmartFusion2 SOC contains an ARM Cortex-M3 Microcontroller Subsystem which
is able to interface to peripherals implemented in the FPGA fabric. Appendix A
depicts the SOC design implemented on the SmartFusion2 device. The design utilises
a CorePWM IP [5] component from the Microsemi catalog which interfaces to the
Microcontroller Subsystem through an ARM Peripheral Bus (APB) interface. The
following parameters were used for the PWM peripheral implemented in the FPGA
fabric:

Table 1 PWM Peripheral Configuration

Master Clock 83 MHz

Max PWM Count 255

PWM Frequency 32.549 KHz
. Micro-
PWM Period 3.072
seconds
3.2 PWM DAC

In order for the CCU to interface with the COTS motor controller the PWM output is
to be converted to an appropriate analog voltage in accordance with the interface
specifications of the motor controller. As described in [3] a RLC circuit can be used as
a 2" order low pass filter to convert a PWM signal into an analog voltage. The

10



following RLC values proved to provide the best

simulations:

Table 2: PWM DAC Low Pass Filter Parameter

performance based on SPICE

L 0.1 mH

C 0.022 microF
R 91 Ohm
Whn 674.2 Krad/s
Zeta 0.674874062

BW 112.183 KHz

3.3 Motor Controller and Hub Motor
Figure 6 below illustrates the Hub Motor Kit that was utilised for the purpose of this
technical note. The kit provides a matched 48V motor controller and 250W BLDC Hub

motor wheel.

Figure 6: COTS Hub Motor Kit

. Altreonic "From Deep Space to Deep Sea"
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4 EPMD SPEED CONTROLLER SOFTWARE

As discussed in Section 1, one of the primary goals of this software development
approach is to firstly verify the functional behaviour of the application in a simulation
environment with the additional requirement that the resulting software
architecture can be seamlessly transferred to the target hardware. To this end
Altreonic's "Interacting Entities" paradigm guides the architectural design so as to
maximise the modularity and portability of the software architecture. According to
this paradigm the design commences by identifying the entities involved and
thereafter the interactions that are required between these entities in order to
implement the required functionality.

4.1 Architecture and Domain Objects

In accordance with the conventional approach of software design one could start by
creating a domain model for the EPMD Speed Control Application. The following
domain model represents a common layered software architecture approach based
on the indicated hardware architecture:

The function of the indicated domain objects can be described as follows:

® Steering Sensor Driver: This entity is responsible for obtaining the data from the
steering sensor and abstracts the physical interface between the CCU and the
actual sensor. Report the updated steering command to the maintenance
manager.

® Throttle Sensor Driver: Responsible for obtaining the data from the throttle
sensor and abstracts the physical interface between the CCU and the actual
Sensor. Report the updated throttle command to the maintenance manager.

® Motor Controller Driver: Responsible for communicating speed commands to the
motor controller and abstracts the physical interface to the actual motor
Controller. Reports the actual speed command to the maintenance manager

® Speed Controller: Responsible for obtaining the sensor data, calculating the
speed commands and issuing the commands to the motor controller driver.
Report the calculated speed command to the maintenance manager

® Maintenance Manager: Report the received data on the maintenance interface
for diagnostic purposes.

12



Maintenance Speed
Manager Controller
Steering Sensor Throttle Sensor Motor Controller
Driver Driver Driver

Figure 7 EPMD Speed Control Domain Model

In addition, as previously mentioned the steering and throttle sensors will be
emulated in software. In order to easily exchange data with external applications, or
even machines that may perform the sensor emulation, a standard UART interface
will be utilised. Furthermore, as indicated by the hardware architecture it is already
known that the motor controller driver will make use of a PWM peripheral to
communicate the speed command to the actual motor controller. The maintenance
manager will make use of a standard TCP/IP over ethernet socket interface in order
to provide a maintenance interface. The maintenance manager will act as the server
to which a client application can connect in order to obtain diagnostic data. The
domain model can therefore be further refined as indicated in the Figure 8:

Maintenance Speed
Manager Controller
Steering Sensor Throttle Sensor Motor Controller
Driver Driver Driver
Socket Driver UART Driver UART Driver PWM Driver

Figure 8: Domain Model indicating Hardware Driver Interfaces

The next step in the design phase is to determine the nature of the interactions
(associations) between the domain objects. It is easily seen that the primary activity
of the Speed Control Application can be defined as "response to action" and can
therefore be considered as a reactive system. The action in this instance being either
a throttle or steer command issued by the operator of the EPMD and the response
being the updated speed command issued to the motor controller. It is therefore
evident that an event driven architecture is best suited for the Speed Control

. Altreonic "From Deep Space to Deep Sea"
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Application and consequently also determines the nature of the associations
between the domain objects. Figure 9 illustrates the next step of refinement of the
domain model whereby the nature of the associations between the domain objects
are indicated.

Maintenance S —— Speed
Manager - Contraller
(7 NIl 7 A
\\\ \\\\\\ \\\\\\\ /// I
SN S~aa Te = |
AN S~ 7T —— I
~ ~~ - -
N pacel B S
SO - \\\\\ } \\\\\\\\\ A
Steering Sensor Throttle Sensor 7 Motor Cantraller
Driver Driver Driver
Socket Driver UART Diriver UART Diriver PWM Driver

Figure 9: Domain Model with Resolved Entity Association

The decision to implement an event driven architecture implies that data in the
system be "pushed" from the producers to the consumers instead of the consumers
polling or "pulling" the data from the producers. This is indicated by the direction of
the association arrows in Figure 9.

4.2 From Domain Objects to Interacting Entities

At this stage the design can be transferred to the Visual Designer environment where
the translation from domain objects and their associations to interacting entities will
take place. Initially the Visual Designer project will contain only one Windows node
on which the initial development and testing will be done.

Figure 10 depicts the instantiation of the domain objects from the domain model
since the design process has shown these to be the interacting entities. The domain
objects are instantiated as tasks which will run in their own thread of execution and
will interact amongst each other.

As a next step the implementation of the interactions between the sensor driver
entities and the speed control entity will be considered. These interactions are of a
sampling nature, meaning that the driver entities will sample the incoming sensor
data at an appropriate frequency and once an updated sample becomes available it
has to be distributed to the interested entities. Given that more entities may be
added to the design in future ,which may also be interested in the sensor data, a
BlackBoard (BB) Hub provides the most flexibility for distributing the sensor data. In
essence the BB is a global space where one entity can publish data and other entities
can access it. However, it is only logical that the BB cannot know a priori how many
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entities will read from it and therefore it remains the responsibility of the reading
entities to determine whether the data on the BB has been updated. This is easily
remedied by including a "Timer Event" according to which the Speed Control Task will
guery the BBs of the sensors to determine if the data has been updated. Once either
of the sensors have updated their data the Speed Controller Task will calculate the
updated speed commands according to a pre-defined algorithm.

The updated speed command will then be issued to the Motor Controller Driver. The
interaction between the Speed Controller Task and the Motor Controller Driver is
therefore such that the Motor Controller can afford to be idle until commanded by
the Speed Controller so as to ensure that the Motor Controller Driver acts upon the
speed command with minimum latency. For such interactions OpenComRTOS
Designer offers a Port Hub. The Motor Controller reads from the Port and blocks until
the Speed Controller has written to the Port. Figure 11 illustrates the updated Visual
Designer design with the added interactions between the drivers and the controllers.

win_node:

ssDriver

5
win_node: X
tsbriver Spesgzg‘::s;ller
win_node:

mcDriver

win_node:
MaintenanceManager

Figure 10: Visual Designer Task Entities

— L1_WriteMessageOntoBoard NW

win_node: win_node: {7
ssDriver SteeringCommand ~byp,
e g,
Sa
Wep,,
T L1_WriteMessageOntoBoard _NW
) = ”fn,L,l,r,QprM 'oa/'d
——18Ssagery, >
win_node: win_node: ——%MBoaryy "
tsDriver ThrottleCommand T <L 1_TestEvent_W , _LlfRaiseEventfuw m
soport W
e pgs_‘?,“s»a—*" } win_node: win_node: win_node:
— L1_GetPacketFromPort W — SpeedController TimerSyncEvent TimerManager
- e i
win_node: win_node:
mcDriver SpeedCommand
win_node:
]]1]] MaintenanceManager

win_node:
fifoMaintenance

Figure 11: Visual Designer Driver and Controller Entity Interactions
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The remaining interactions between the Maintenance Manager and the various
entities can now be implemented. These particular interactions exhibit a many-to-
one nature and therefore requires a non-blocking buffering mechanism. For such
interactions OpenComRTOS Designer offers a FIFO hub which, as the name implies,
allows for messages to be queued and subsequently de-queued on a first in - first out
basis. Figure 12 presents the finalised Visual Designer design with all entities and

interactions defined.

L1_WriteMessageOntoBoard _NW - \

win_node:. win_node: ™~ 4y
ssDriver SteeringCommand "'*(,‘O/Jy,‘,
\ ~Je,
. ~5Sa
N gf'ﬁro
“WriteMessage OntoBoard_NW ~3
L1 WriteM ] i - g —"Qqard
& Mgy e
win_node: ™ h N, win_node: T——%MBoary )
tsDriver - 9, ThrottleCommand T L1_TestEvent W e L1_RaiseEvent_NW [+~
. g port NW_— T
\1"{1\5 : ‘e’b ey pqS_‘!E@TO B " win_node: win_node: win_node:
L1 @ti;:g&‘fm}} w H _— W7 speedcontroller TimerSyncEvent TimerManager
T ~CetPaCgEromit - s>
AN R
X \ e
win_node: U En, My win_node: N 9\9‘“’
mcDriver —=1qu, P
"""'gl—lff'fo ~ . SpeedCommand =
_}}:E?ﬂ — win_node:

— MaintenanceManager

win_node:
fifoMaintenance

Figure 12: Final Speed Controller Visual Designer Simulation Project

The implementation of the design can now proceed by adding the envisaged
functionality to each of the Task entities. Appendix B provides the flow diagrams for
each of the Task entities.

4.3 Simulation and Functional Verification
Figure 13 serves as a deployment diagram for the simulation environment of the
Speed Controller Application.
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[+ WINDOWS NODE

5 Virtual Serial
[=] Steering Sensor Port

Emulator
\ stdio
Speed
Controller
CscCl

Virtual Serial

[=]  Throttle Sensor Port /
Emulator

TCP/IP
Socket

[=] Diagnostic
Application

Figure 13: Speed Controller Simulation Deployment Diagram

During the initial simulation phase the Motor Controller Driver will only print the
calculated speed command to the standard output (stdio). Several print statements
are also added to the Maintenance Manager for debugging purposes. The Steering
Sensor Emulator, Throttle Sensor Emulator as well as Diagnostic Application is
written in PyQt and runs externally from the Speed Controller CSCI. The sensor
emulators connect to the Speed Controller CSCl via virtual serial ports created under
Windows. The Diagnostic Application makes use of a socket connection to connect to
the maintenance interface provided by the Speed Controller CSCI. Appendix C depicts
the simulation environment of the EPMD Speed Controller.

The functional verification of the EPMD Speed Controller application mainly entails
verification of the differential drive speed control algorithm. In its simplest form the
algorithm can be described as follows:

Two , two dimensional lookup tables are defined namely:

OuterWheelDiffDelta[11][11]
InnerWheelDiffDelta[11][11]

These lookup tables contain a ratio factor for the outer and inner wheels that is to be
added and subtracted respectively to/from the nominal speed command. The row
and column index of the lookup tables are calculated as a function of the current
speed and steering commands as follows:

. Altreonic "From Deep Space to Deep Sea"
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RowlIndex = f(SteeringCommand)
Collndex = g(ThrottleCommand)

Where 10 and g0 are simple scaling functions.

The updated speed command for the outer wheels is therefore calculated as follows:
Speed o wioers = (1 + Outer WheelDiffDelta] Rowlndex [ Collndex]) x NomSpeed
The updated speed command for the inner wheels is therefore calculated as follows:
Speed ., .. ineois = (1 — InnerWheel DiffDelta] RowIndex|[Collndex]) x NomSpeed
And
NomSpeed = h(ThrottleCommand)

where

h(x)=a

h(x)=x

x=0° x=0

The function definition of /() serves to cater for the scenario when a steering

command is issued whilst the vehicle is stationary.

The definition of whether the left or right wheels are to be considered as inner or
outer wheels is based on the direction of the steering command. Thus:

LeﬁSp eed = Sp eedOuter—Wheels‘

SteerDir=Right

LeﬁSpeed = Speed{nner—Wheeb‘

SteerDir=Left

nghtSpeed = Speed[nner—Wheels

SteerDir=Right

RightSpeed = Speed ., i

SteerDir=Lefi
The final control command issued to the motor controllers are therefore:

LefiCommand = p(LeftSpeed)
RightCommand = p(RightSpeed )

where p() is also a simple scaling and offset function in order to generate an output

voltage in accordance with the motor controller input interface specification.

The envisaged functional behaviour of the algorithm is therefore to increase the
outer wheel speed and decrease the inner wheel speed by a factor that is
proportional to the current speed command and steering command. The exception

18



being when the nominal speed command is zero in which case the speed of the
wheels is a function of the steering command only.

It is readily seen that the simulation environment facilitates to easily verify the
functional behaviour and algorithm correctness of the EPMD Speed Controller
Application. The multiple output mechanisms provided by the simulation
environment allows to quickly determine the integrity of the data paths as well as
the algorithm outputs. In addition the use of debuggers is also simplified at this stage
since the application is built into a single executable. The ease with which the
application can be modified and rebuilt also allows to freely experiment with various
implementation concepts as well as execute a multitude of test cases and record
results without the need to reprogram target hardware.

4.4 From Simulation to Target Hardware

The next step in the development process entails transferring Task entities to the
target hardware. Figure 14 serves as a deployment diagram for the case where the
Speed Controller Application has been partly transferred to the target hardware.

[+ WINDOWS NODE [+ SF2 NODE
: Virtual Serial
[=] Steering Sensor Port
Emulator
\ UART
Speed Speed
CCSO(?I"‘;’%I; Controller
Virtual Serial (Part) CSCl (Part)
[=]  Throttle Sensor Port /
Emulator ‘ ‘
APB
TCP/IP
Socket ‘
‘ PWM Peripheral
(=] Diagnostic
Application

Figure 14: Speed Controller Application Partly Transferred to Target Hardware

In order to transfer a Task to the target hardware the topology definition in Visual
Designer needs to updated. This process very simply entails adding a SmartFusion2
node to the topology and defining and connecting the Link Ports between the Nodes.
Figure 15 illustrates the updated topology within Visual Designer with the Windows
Node and the SmartFusion2 Node as well as the Link Port connection.

...- -
win_node sf2_node

Figure 15: Speed Controller Topology
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The next step entails transferring tasks to the target hardware, or to be more specific
to the sf2_node in the Visual Designer project. Figure 16 illustrates the mechanism in
Visual Designer to assign a Task to a hardware Node. For the purpose of this technical
note the mcDriver Task as well as the SpeedController Task will be transferred to the
SmartFusion2 Node. The only minor code modifications necessary for the mcDriver
task is to remove the stdio output and include the actual PWM peripheral interface.

Topology  Application
T L1_wrigeMessage UntoBoard_NwW mcDriver task
win_node:.. win_node: L2, Property Value
ssDriver SteeringCommand 2y, node sf2_node
5200, name
"o, g, priority SR NT

—L1_CopyMess \\\‘03’?/\”"/ argume... NULL
T ——29eFrompo,, g — status L1_STARTED
_TestEvent W~ _L1_RaiseEvent_NW :
- —r-lesttvent > - T stackSize 1024

port entrypo... mcDriverEP
“ putpatd’ =" win_node: win_node: ypo.
— TimerManage
>
e
P
b
e -
il -~ L1_Deque ueFifo_W [
win_node: _ win_node:
fifoMaintenance MaintenanceManager

Figure 16: OpenVE Task to Node assignment

Figure 17 shows the resulting Visual Designer project with the mcDriver task and
SpeedController task assigned to the SmartFusion2 node.

L1_WriteMessageOntoBoard_NW
win_node: win_node: \\\ 4
ssDriver SteeringCommand %, S,
LlﬁWrnteMessageOntoBoard_mN .
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Figure 17: Speed Controller Application with Tasks transferred to Target Hardware
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5 RESULTS

5.1 PWM DAC

Prior to being able to integrate the SmarFusion2 hardware with the motor controller
it is necessary to verify that the effective resolution of the PWM DAC is sufficient to
control the hub-motor. Figure 18 illustrates the results obtained from generating a 1
kHz sine wave from a test program running on the SmartFusion2 Microcontroller.
From the Figure it is seen that the resolution of the analog signal is sufficient to serve
as an input to the motor controller.

1 0.2ms

Figure 18: PWM DAC 1 kHz Sine Wave

5.2 Motor Speed Control

In Appendix C the simulation environment is depicted whereas Appendix D illustrates
the final hardware experimental setup as well as the sensor emulators and software
oscilloscope configuration. The oscilloscope channel connections are as follows:

Table 3: Oscilloscope Measurement Configuration

Channel . Measurement
Connection Node Measured Parameter i
No Unit
Motor Controller
1 PWM DAC Output Volt

Speed Command

BLDC Hall Sensor | Motor Commutation
2 Hertz
Output Speed

. Altreonic "From Deep Space to Deep Sea"
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In order to compare the performance of the final implementation with the
simulation results identical test cases were executed in the simulation environment
as well as the experimental hardware setup. To be more specific a throttle command
was set at different set points and for each set point the steer command was varied
from -100% to 100% which corresponds to a hard left and hard right steer command
respectively. The steer command was incremented by 10% increments whilst the
output of the control algorithm was documented in the case of the simulation tests
and the frequency of the motor hall sensor output was measured in the case of the
hardware tests. Finally, a plot of the Steer Command vs Speed Control Algorithm
Output as well as Steer Command vs. Motor Hall Sensor Output Frequency was
created to compare the simulation results with the results obtained from the
hardware measurements. Appendix E shows the simulation results and measured
motor speed for the 0%, 50% and 100% throttle set points. From the results it can be
seen that the measurements correlate quite well with the simulation results
although the actual motor speed exhibits a steeper gradient which causes earlier
saturation. This behaviour can be corrected by further optimising the scaling
algorithm p() implemented in the mcDriver Task.
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6 CONCLUSION

This technical note has clearly demonstrated the ease with which a heterogeneous
distributed real-time application can be developed, simulated and functionally
verified on a PC platform and subsequently transferred to the target hardware with
Altreonic's OpenComRTOS Designer. In addition it was also shown how Altreonic's
"Interacting Entities" paradigm naturally ties in with the traditional software design
methodology of utilising a domain model and how easily translation of domain
objects and their associations into Tasks and interactions within the Visual Designer
environment is accomplished. Furthermore, given that eventual integration with the
target hardware is as simple as re-assigning Tasks to a different Node affords more
time and effort to be spent refining the architecture and verifying the functional
behaviour of the application which altogether results in better quality software.

. Altreonic "From Deep Space to Deep Sea"
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7 APPENDIX A:

7.1 SmartFusion2 SOC Design
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Figure 19: SmarfFusion2 SOC Design Block Diagram
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7.2 APPENDIX B: Visual Designer Task Flow Diagrams

7.2.1 ssDriver
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Figure 20: Steering Sensor Driver Flow Diagram
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Figure 21: Throttle Sensor Driver Flow Diagram

7.2.3 mcDriver
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Figure 22: Motor Controller Flow Diagram

7.2.4 SpeedController
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Figure 23: Speed Controller Flow Diagram
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7.2.5 MaintenanceManager
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Figure 24: Maintenance Manager Flow Diagram

7.3 EPMD Speed Controller Simulation Environment
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Figure 24 Maintenance EPMD Speed Controller Simulation Environment
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Figure 26 Speed Controller Hardware Configuration

7.4 Speed Control Experimental Setup
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Figure 27: Speed Control Application Measurement Setup
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7.5 Speed Control Algorithm Test Results

Speed Controller Simulation and Hardware Measurements
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Figure 28: Comparison of Simulation results and Motor Speed Measurements
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What this booklet is all about

This technical note serves to demonstrate how Altreonic's OpenComRTOS Designer
allows for embedded software developers of heterogeneous distributed systems to
cross develop and simulate their application on a PC environment and seamlessly
transfer their code to the target hardware. To this end a Microsemi SmartFusion2 SOC
Evaluation Kit is utilised as the target hardware for a hub motor skid steering based
speed controller of an Electric Personal Mobility Device (EPMD).
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