
1

OpenComRTOS-Suite Manual and API Manual
1.4.3.3

Altreonic NV
Gemeentestraat 61 Bus 1

3210 Linden
Belgium

http://www.altreonic.com

OpenComRTOS-Suite 1.4.3.3 Manual

http://www.altreonic.com

Contents

I OpenComRTOS Fundamentals 1

1 General Concepts 5
1.1 Background of OpenComRTOS . 5
1.2 Physical structure of the target processing system . 6
1.3 Layered architecture of OpenComRTOS . 6
1.4 The logical view of the L1 Layer . 7

1.4.1 Principle of synchronization and communication 7
1.4.2 Scheduling Tasks and Task interactions through the RTOS kernel 8

1.5 Inter-Task interaction . 10
1.6 Application specific services . 12
1.7 A new concurrent programming paradigm . 12
1.8 Inter-Node interaction . 15

2 Functional Design of the L1 Layer 17
2.1 Task interactions . 17

2.1.1 Logical view of Task . 17
2.1.2 Logical view of Packets . 20
2.1.3 Logical view of the generic L1 Hubs . 21
2.1.4 On scheduling for real-time . 22
2.1.5 On Timers . 22
2.1.6 On runtime errors . 23
2.1.7 Logical view of the Packet Pool . 23

2.2 Inter-node interactions . 23
2.2.1 Logical view of Link Drivers and inter-node interactions 23
2.2.2 Logical view of the Router . 25

2.3 Multi-tasking . 25
2.3.1 Definition of multi-tasking . 25
2.3.2 Logical view of the Context Switch . 25
2.3.3 Logical view of the Kernel . 26
2.3.4 Logical view of the Scheduler . 29

II Installation Instructions 31

3 Installation Instructions 33
3.1 OpenComRTOS-Suite Installation Instructions . 33

3.1.1 MinGW Tool-chain for Windows . 33
3.1.2 Adding MinGW to the System Binary Search Path 35
3.1.3 Installing the SVM Toolchain . 35
3.1.4 CMake Build System . 35
3.1.5 Installing the OpenComRTOS-Suite . 38
3.1.6 Installing an additional OpenComRTOS Kernel Image 39

3.2 How to run an Example . 39

ii CONTENTS

3.3 Summary . 40

4 Installing ARM Cortex M3 43
4.1 OpenComRTOS-Suite Installation Instructions . 43

4.1.1 Installing the OpenComRTOS Kernel Image for NXP-CoolFlux 43
4.2 Setup of the LM3S6965 Development Board . 43

4.2.1 FTDI Driver Installation . 44
4.2.2 Installing the LM Flash Programmer . 44

4.3 Building and Running a Heterogeneous System . 45
4.3.1 Semaphore Loop using RS232 link Technology 45
4.3.2 Semaphore Loop using TCP-IP over Ethernet link Technology 49

4.4 OpenComRTOS Tracing . 50
4.4.1 Tracing in OpenComRTOS . 50
4.4.2 How to enable tracing . 50
4.4.3 How to retrieve a trace . 51

4.5 Summary . 52

5 Installing NXP-Coolflux 55
5.1 OpenComRTOS-Suite Installation Instructions . 55

5.1.1 Installing the OpenComRTOS Kernel Image for NXP-CoolFlux 55
5.2 Examples . 55

5.2.1 Loading and building a NXP-CoolFlux Example with OpenVE 56
5.2.2 Example: SemaphoreLoop_W . 57
5.2.3 Example: PortLoop_W . 58
5.2.4 Example: Semaphore_WT . 59
5.2.5 Example: CodeSize_AllServices . 60
5.2.6 Example: CodeSize_AllServices_pTimer . 61
5.2.7 Example: InterruptLatencyMeasurement . 61

5.3 Summary . 63

III Usage Tutorials 65

6 Howto Use the Open System Inspector 67

IV OpenComRTOS 71

7 Module Index 73
7.1 Modules . 73

8 File Index 75
8.1 File List . 75

9 Module Documentation 77
9.1 The OpenComRTOS Hub Concept . 77
9.2 Port Hub . 77

9.2.1 Detailed Description . 78
9.2.2 Hub Description . 78
9.2.3 Example . 78
9.2.4 Source Code for Task1EntryPoint . 79
9.2.5 Source Code for Task2EntryPoint . 79
9.2.6 Function Documentation . 80

9.3 Event Hub Operations . 83
9.3.1 Detailed Description . 83

OpenComRTOS-Suite 1.4.3.3 Manual

CONTENTS iii

9.3.2 Example . 84
9.3.3 Source Code of Task1EntryPoint . 84
9.3.4 Source Code of Task2EntryPoint . 85
9.3.5 Function Documentation . 85

9.4 Semaphore Hub Operations . 88
9.4.1 Detailed Description . 88
9.4.2 Example . 89
9.4.3 Source Code of Task1EntryPoint . 89
9.4.4 Source Code of Task2EntryPoint . 89
9.4.5 Function Documentation . 90

9.5 Resource Hub Operations . 93
9.5.1 Detailed Description . 93
9.5.2 Example . 94
9.5.3 Source Code of Task1EntryPoint . 94
9.5.4 Source Code of Task2EntryPoint . 94
9.5.5 Function Documentation . 95

9.6 FIFO Hub Operations . 97
9.6.1 Detailed Description . 98
9.6.2 Example . 98
9.6.3 Source Code of Task1EntryPoint . 99
9.6.4 Source Code of Task2EntryPoint . 99
9.6.5 Function Documentation . 100

9.7 Memory Pool Hub Operations . 103
9.7.1 Detailed Description . 103
9.7.2 Example . 104
9.7.3 Function Documentation . 105

9.8 Task Management Operations . 107
9.8.1 Detailed Description . 107
9.8.2 Function Documentation . 108

9.9 Base Variable types . 110
9.9.1 Typedef Documentation . 111
9.9.2 Variable Documentation . 112

9.10 Types related to Timer Handling . 113
9.10.1 Typedef Documentation . 113
9.10.2 Variable Documentation . 113

10 File Documentation 115
10.1 include/L1_api_apidoc.h File Reference . 115

10.1.1 Define Documentation . 116
10.1.2 Function Documentation . 117

10.2 include/L1_types_apidoc.h File Reference . 117
10.2.1 Define Documentation . 119
10.2.2 Typedef Documentation . 119
10.2.3 Enumeration Type Documentation . 120

10.3 src/kernel/L1_types.c File Reference . 121

V Stdio Host Service 123

11 File Index 125
11.1 File List . 125

12 File Documentation 127
12.1 src/include/StdioHostService/StdioHostClient.h File Reference 127

OpenComRTOS-Suite 1.4.3.3 Manual

iv CONTENTS

12.1.1 Define Documentation . 128
12.1.2 Function Documentation . 128

12.2 src/include/StdioHostService/TraceHostClient.h File Reference 133
12.2.1 Function Documentation . 133

VI Graphical Host Service 135

13 Data Structure Index 137
13.1 Data Structures . 137

14 File Index 139
14.1 File List . 139

15 Data Structure Documentation 141
15.1 GhsBrush Struct Reference . 141

15.1.1 Detailed Description . 141
15.1.2 Field Documentation . 141

15.2 GhsColour Struct Reference . 141
15.2.1 Detailed Description . 142
15.2.2 Field Documentation . 142

15.3 GhsPen Struct Reference . 142
15.3.1 Detailed Description . 142
15.3.2 Field Documentation . 142

15.4 GhsRect Struct Reference . 143
15.4.1 Detailed Description . 143
15.4.2 Field Documentation . 143

16 File Documentation 145
16.1 src/include/GraphicalHostService/GhsTypes.h File Reference 145

16.1.1 Enumeration Type Documentation . 145
16.2 src/include/GraphicalHostService/GraphicalHostClient.h File Reference 145

16.2.1 Function Documentation . 146
16.3 src/include/GraphicalHostService/GraphicalHostService.h File Reference 150

16.3.1 Define Documentation . 151

VII Open System Inspector Service 153

17 Data Structure Index 155
17.1 Data Structures . 155

18 File Index 157
18.1 File List . 157

19 Data Structure Documentation 159
19.1 _union_Hubs::_struct_L1_Event_ Struct Reference . 159

19.1.1 Field Documentation . 159
19.2 _union_Hubs::_struct_L1_Fifo_ Struct Reference . 159

19.2.1 Field Documentation . 160
19.3 _union_Hubs::_struct_L1_PacketPool_ Struct Reference 160

19.3.1 Field Documentation . 160
19.4 _union_Hubs::_struct_L1_Resource_ Struct Reference 160

19.4.1 Field Documentation . 161
19.5 _union_Hubs::_struct_L1_Semaphore_ Struct Reference 161

OpenComRTOS-Suite 1.4.3.3 Manual

CONTENTS v

19.5.1 Field Documentation . 161
19.6 _union_Hubs Union Reference . 161

19.6.1 Field Documentation . 162
19.7 hubInfoStruct Struct Reference . 162

19.7.1 Detailed Description . 162
19.7.2 Field Documentation . 162

19.8 reqType Struct Reference . 162
19.8.1 Field Documentation . 163

19.9 taskInfoStruct Struct Reference . 163
19.9.1 Detailed Description . 163
19.9.2 Field Documentation . 163

20 File Documentation 165
20.1 include/OpenSystemInspector/OpenSystemInspectorClient.h File Reference 165

20.1.1 Define Documentation . 166
20.1.2 Typedef Documentation . 167
20.1.3 Function Documentation . 167

20.2 include/OpenSystemInspector/OpenSystemInspectorServer.h File Reference 169
20.2.1 Enumeration Type Documentation . 169
20.2.2 Function Documentation . 170

20.3 include/OpenSystemInspector/OpenSystemInspectorService.h File Reference 170
20.3.1 Define Documentation . 171
20.3.2 Typedef Documentation . 171

VIII Save Virtual Machine for C 173

21 Safe Virtual Machine for C (SVM) 175
21.1 Introduction . 175
21.2 SVM Host Server . 175

21.2.1 Properties . 175
21.3 SVM-Platform . 176

21.3.1 Properties . 176
21.4 Tutorial . 176

22 Data Structure Index 181
22.1 Data Structures . 181

23 File Index 183
23.1 File List . 183

24 Data Structure Documentation 185
24.1 Svm_errorDescription Struct Reference . 185

24.1.1 Field Documentation . 185
24.2 Svm_taskArguments Struct Reference . 185

24.2.1 Field Documentation . 186
24.3 Svm_vmTaskArguments Struct Reference . 186

24.3.1 Field Documentation . 186
24.4 SvmHsSync Struct Reference . 187

24.4.1 Detailed Description . 187
24.4.2 Field Documentation . 187

25 File Documentation 189
25.1 include/SvmService/SvmClient.h File Reference . 189

25.1.1 Function Documentation . 189

OpenComRTOS-Suite 1.4.3.3 Manual

vi CONTENTS

25.2 include/SvmService/SvmServer.h File Reference . 191
25.2.1 Define Documentation . 192
25.2.2 Typedef Documentation . 192
25.2.3 Enumeration Type Documentation . 193

25.3 include/SvmService/SvmService.h File Reference . 194
25.3.1 Define Documentation . 194

IX Appendix 195

References 197

Glossary 199

Index 203

OpenComRTOS-Suite 1.4.3.3 Manual

Part I

OpenComRTOS Fundamentals

Introduction

This document is intended as a manual that describes the use of OpenComRTOS, a network centric Real-
time Operating System (RTOS) for developing embedded real-time applications. However, OpenComR-
TOS is more than that. OpenComRTOS was developed using formal modelling techniques from the ground
up as a coherent runtime and programming system for “networked” embedded systems. It fits within a uni-
fied systems engineering methodology based on an “Interacting Entities” architectural paradigm. Almost
any system can be developed following this paradigm, but often the tool support will be lacking. Many
tools exist and many paradigms exist. The issue for the embedded (software) engineer is that each of these
tools and methods have different semantics, making it very hard to combine them and to make sure that
no remaining errors exist due to subtle side-effects as a result of the subtle differences in the semantics.
This makes using OpenComRTOS particularly interesting for developing high-reliability or safety critical
embedded systems. The RTOS kernel and its services were developed using a formal methodology, ana-
lyzed to the essential core and as a result OpenComRTOS has several unique properties that can make a
big difference when developing embedded applications. We name some of the most important ones:

• Scalability: OpenComRTOS applications can be redeployed, mostly by recompilation of the appli-
cation source code, from very small single microcontroller systems to target systems with a large
number of distributed heterogeneous processing Nodes.

• Extensible. OpenComRTOS can be extended with application specific services and entities without
the need for the user to develop another middle-ware layer. Such services are integrated at the
system level, itself based on a fine-grain microkernel architecture combined with packet switching.
New services are integrated using a meta-modeling approach.

• Distributed operation. OpenComRTOS was designed from the start as a network centric runtime
system. Whether the application Tasks and the kernel entities are placed on a single processing
Nodes or are mapped onto several ones, the user does not need to care about where his Tasks and
entities are mapped (except at configuration time). The system itself takes care of the routing and
system level communication while the application source code is independent of the network and
application topology. We call this a “Virtual Single Processor” runtime model.

• Efficiency. As a result of the formal modelling, the kernel entities and services are very orthogonal
and generic. A major consequence is that the code size is very small (about 5 to 10 times smaller
than equivalent classical implementations). Small code size also means that less time is spend in
executing kernel services resulting in a lower overhead. Code size can be as small as 1 Kbyte while
a fully featured distributed implementation only takes up about 5 Kbytes.

• Safety. All kernel services were modelled at the architectural design using a formal model checker.
The final implementation was also verified using formal modelling to make sure that the implemen-
tation did not introduce potential errors. Thanks to its design based on packet switching, OpenCom-
RTOS has no issue with memory fragmentation and buffer overflow. If it runs out of memory, the
system will automatically start throttling allowing allocated resources to be freed up again.

As one can see, OpenComRTOS is much more than just another RTOS. It is a universal real-time pro-
gramming system for embedded applications. It is also supported with easy-to-use tools like the Visual

4

development Environment (OpenComRTOS-VE) supporting automatic code generation and visual tracing
and debugging.

Scope

The scope of this document is limited to developing OpenComRTOS based applications. No detailed
knowledge of its internal functioning is needed.

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 1

General Concepts

1.1 Background of OpenComRTOS

The main purpose of OpenComRTOS is to provide a software runtime environment supporting a coherent
and unified systems engineering methodology, based on Interacting Entities,

In OpenComRTOS the dominant active Interacting Entity is a software entity, called a “Task”. Other
entities are specific instances of generic “Hubs” and they play an important role in the interactions between
the Task entities. All Tasks interact only through Hubs, i.e. there are no direct Task-Task interactions,
but specific types of Hubs will provide specific semantics for the kernel services used by the Tasks to
interact. As such the basic functionality of a Hub is to synchronise between Tasks. The specific behaviour
is determined by the logical predicates that govern the synchronization and by the action predicates that are
invoked once a synchronization has taken place. This allowed us to redefine Hub services as the traditional
services one finds in other RTOS, e.g. Events, Semaphores, Ports, FIFOs, Resources and Memory Pools.
An additional one is a Packet Pool. Another difference is that this allows the user to integrate his own
services in the RTOS system and that some services are available as asynchronous services.

A Task will be running on a computing device (CPU + RAM + Peripherals + etc.), called a “Node”.

There may be many Tasks running on a single Node. These Tasks may be independent or synchronising
and communicating with each other. In other words, it is possible to build a network of Interacting Entities
using only one Node, every Task virtualising a complete CPU instance.

Besides Tasks, OpenComRTOS provides services and Hub Entities allowing Tasks to synchronise and to
exchange data using a specific behaviour for each type of Entity. This behaviour represent the system
level interaction from which an application can build higher level Interactions, e.g. like communication
protocols that consists of several Put/Get pairs.

OpenComRTOS is a distributed RTOS and contains a build-in router and communication layer. While hid-
den from the application programmer, this allows Tasks to synchronise and to communicate transparently
across a network of processing Nodes. By design this means that one Node can be part of local network
that is connected though internet with another Cluster at the other side of the world. This support for a
transparent distributed operation however is an option that does not prevent using OpenComRTOS on a
single CPU.

For the application programmer, there is no logical difference between Tasks running on the same Node
or on multiple Nodes. He programs in a network topology independent and transparent way, except when
physical differences dictate otherwise.

As such, OpenComRTOS comes with a PC hosted simulator. This “hostnode” can be integrated in an
embedded system just like any fully embedded Node and allows embedded Nodes access to host services

6 General Concepts

Figure 1.1: Generic structure of a distributed computing system

in a transparent way.

1.2 Physical structure of the target processing system

Figure 1.1 represents the physical structure of a generic and distributed computing system from the point
of view of OpenComRTOS.

A target system is hierarchically composed of the following three layers:

• Sites, consisting of

• Clusters, consisting of

• Nodes, hosting: Entities (e.g. Tasks, Hubs, . . .)

The Nodes communicate with each other via various physical communication channels (internal bus, IO
buses, networks, IO Pipes, etc). There are also Nodes that fulfil the role of communication Hubs providing
communication between different clusters in the network. Note that these three layers will often correspond
with three domains where the physical parameters of the communication layer will differ in performance,
bandwidth and communication latency. From a logical point of view however there is no difference at the
application level. Only the timing will differ.

1.3 Layered architecture of OpenComRTOS

OpenComRTOS is being developed using a scalable architecture. Each higher level layer builds on the
lower layers and provides a specific functionalities. Given that each layer adds tunctional behaviour, one

OpenComRTOS-Suite 1.4.3.3 Manual

1.4 The logical view of the L1 Layer 7

should view these layers as semantic layers instead of strictly functional ones. The layering however
is still reflected in the use of different system Packets (L0, L1 and L2 with L0 and L1 merged in the
implementation).

• L0 — The lowest semantic layer. It provides the basic primitive services, such as Task scheduling,
routing of packets and a simple mechanism for intertask synchronization and communication. When
there is more than one Node, it also provides an inter-Node communication mechanism.

• L1 — The next semantic layer. It provides flexible Task synchronization and coordination services.
This layer can be used to emulate existing third party RTOS. L1 services include the layer L0 ser-
vices.

• L2 — The highest semantic layer. This layer can support user-defined services, often supporting
dynamic behaviour. Given that it may include widely distributed services, the communication delay
can become important and the real-time behaviour can become “soft” real-time. L1 services will run
on top of an application specific L2 communication layer.

OpenComRTOS operates at the L0 layer by using just Ports and Packets. The Ports are used to exchange
Packets between Tasks and synchronise by a Put_ and Get_ pair of service requests. The L1-Packets are
atomic units containing a header and a payload zone for application specific data. The kernel mostly
operates by shuffling the packets around while updating or using the header field information.

To implement the full L1 layer a generic Hub entity is used. It provides services with different functional
behavior ranging from simple Event synchronization to a more complex behavior that includes buffering
of data and copying it network wide.

1.4 The logical view of the L1 Layer

The distributed environment, described in the sections above is based on the existence of a fast and uni-
fied communication layer. The OpenComRTOS Layer L1 therefore is defined as providing the following
functionalities:

1. a Packet-switching communication layer using Inter-node Links and inter-node communication Routers;

2. a Kernel to provide functional services and operating resources to Tasks;

3. a Task Scheduler to schedule the Tasks according to a real-time scheduling policy.

The logical structure of an OpenComRTOS based system on a network of processing node is shown in
Figure 1.2. For the application it will look like a Virtual Single Processor.

1.4.1 Principle of synchronization and communication

The distributed environment, described in the sections above is based on the existence of a unified com-
munication layer, independent of the underlying communication protocol or the hardware. In terms of
this communication layer, an abstraction of the physical inter-node communication medium is called an
Internode Link.

Each Node can have a number of Internode Links to other Nodes. Logically, every Internode Link is a
point-to-point connection to another Node. It consists of a transmitting and receiving links, called LinkTX
and LinkRX respectively. Self-loops are allowed as well as multiple Links between the Nodes. If there are
no links, e.g. when there is only one Node in the system, the routing function is void and the system works
in an identical way. Note however, that such an Internode Link is not necessarily a physical point-to-point

OpenComRTOS-Suite 1.4.3.3 Manual

8 General Concepts

Figure 1.2: Logical structure of a distributed OpenComRTOS system

connection. It can be as well a shared memory that all Nodes have access to, or it can even be a virtual
connection when e.g. some Nodes are hosted on top of legacy operating systems and OpenComRTOS
communication uses “tunneling” (e.g. by calling the native socket communication) to connect the Nodes.

Tasks interact with the Internode Links via a standardized interface. The interaction to the related hardware
is hardware specific and should not influence the interface.

OpenComRTOS is based on a Packet-switching architecture. This means that Packets of a fixed size (that
can be different for each application) are passed from one Entity to another Entity. As Tasks may be located
on different Nodes, a Packet may be passed from one Node to another. Coming from a source Node to a
destination Node, the Packets may pass through a number of intermediate Nodes. For the application
programmer however, Packets are sent to an intermediate Entity and are Getd from an intermediate Entity.
This effectively isolates Tasks from each other and increases the scalability of the system. At the application
view OpenComRTOS provides services with specific semantics and the underlying Entities and Packets can
be “hidden” in the implementation and are encapsulated in the services provided.

To provide the routing of Packets from Node to Node, there are inter-node communication Routers in the
distributed network. The Router is a function present on every Node. This function provides a mapping
between destination Nodes and Internode Links to be used by OpenComRTOS to reach the destination
Node. The router itself is invisible to the application programmer. As all OpenComRTOS services are by
default “distributed”, the routing is void when routing between local Tasks.

1.4.2 Scheduling Tasks and Task interactions through the RTOS kernel

To timely provide the Tasks with the required operating resources (RAM, CPU time, functional services,
etc.), OpenComRTOS has a Kernel with a Task scheduler.

OpenComRTOS-Suite 1.4.3.3 Manual

1.4 The logical view of the L1 Layer 9

Figure 1.3: Functional relationship between entities of the distributed system

The Kernel is the logical entity that:

1. provides services to the Tasks and

2. also schedules the Tasks according to a real-time scheduling policy.

Although the functions are logically separate, in the practical implementation they are intertwined in Open-
ComRTOS.

From the point of view of the functional relationships between the above mentioned entities, the software
runtime environment on a Node consists of:

• A Task scheduler that switches the CPU context between Tasks

• (One or more) Tasks that request services from the Kernel (using a Packet, but that may be hidden)

• The Kernel that provides these services. When one of the Tasks is remote, it passes on the service
request to the remote Node

• When remote services and Entities are involved, Routers are used for passing on the Packets to
Internode Links, respectively to receiving them from Internode Links

• Internode Links have Transmitting (LinkTX) and Receiving (LinkRX) logical Pipes

• LinkTX and LinkRX are provided by the Link hardware, managed by (hardware) specific link drivers
and interrupt service routines (Link driver, HW ISR)

The relations are represented in Figure 1.3.

OpenComRTOS-Suite 1.4.3.3 Manual

10 General Concepts

Figure 1.4: Generic scenario of a service request using the Hub entity

1.5 Inter-Task interaction

An inter-task interaction consists of two parts: putting a Packet to a Hub and getting a Packet from the
same Hub. These Packets are actually carriers for service requests and will be invisible to the programmer
(except when using asynchronous services). When no data is interchanged (data size = zero), we call such
an interchange of Packets “synchronisation”. When data is exchanged as well, we call it communication
but more complex semantics are possible as well. Note however, that at the level of L1, this is an issue for
the application code running in the Tasks. From a point of view of the Kernel and the Hub, just a Packet has
been interchanged although in the implementation, just the relevant header fields and databytes are copied
from one Packet to another.

A Port provides a minimum but complete functionality that includes synchronization and communication.
It is really an instance of a more generic mechanism that was called a Hub. The Hub entity also pro-
vides services like Events, Semaphores, FIFO queues, Ports, Resources and Memory Pools. The semantic
differences are mainly determined by the actions associated upon synchronization. We call these actions
the “Synchronising Predicate” and the action that results from it, i.e. the requested service, the “Action
Predicate”.

The L1 Entities can be classified in groups as shown in Table 1.1.

In general, we can see that the generic mechanism is one of interaction between a Task that makes some-
thing available (the “put” operation) and a Task that wants to “get” it. Both are requesting the service
through an intermediate Hub Entity via the kernel Task. In the context of common language used for such
services, the “Put” operation can be called a “put”, “enqueue”, “insert”, “release”, “raise”, “free”, etc with
the “Get” operation can be called “wait”, “get”, “lock”, “dequeue”, “read”, “allocate”, etc. In all cases one
side of the interaction will make “something“available on which the other side can wait. For some services
no explicit synchronization is needed while for some services two steps are needed. One in which both
sides synchronise and the ‘something” is made available (e.g. with reservation in a waiting list) with a sec-

OpenComRTOS-Suite 1.4.3.3 Manual

1.5 Inter-Task interaction 11

Hub type Request Guard Action
type

Port Put Waiting Get request Both Task rescheduled,
Packet exchanged

Port Put No waiting Get request Task enters WAIT state
Port Get Waiting Put request Both Tasks rescheduled,

Packet exchanged
Port Get No waiting Put request Task enters WAIT state
Event Put Event = FALSE Event = TRUE, Task rescheduled
Event Put Event = TRUE Task enters WAIT state
Event Get Event = TRUE Event = FALSE, Task rescheduled,
Event Get Event = FALSE Task enters WAIT state
Semaphore Signal Semaphore count <MAXINT Semaphore incremented,

Task rescheduled
Semaphore Signal Semaphore count = MAXINT Task enters WAIT state
Semaphore Get Semaphore count >0 Semaphore decremented,

Task rescheduled
Semaphore Get Semaphore count = MAXINT Task enters WAIT state
Resource Lock Resource has no owner Task Task becomes owner,

Task rescheduled
Resource Lock Resource has owner Task Task enters WAIT state,

priority inheritance applied
Resource Unlock Resource has no owner Task Task rescheduled,

return code RC_FAIL
Resource Unlock Resource has owner Task Task rescheduled,

return code RC_FAIL
if owner Task different from self

FIFO Enqueue Count FIF0 entries Task reschedules,
between 1 and maximum data enqueued

FIFO Enqueue Count FIF0 entries = maximum Task enters WAIT state
FIFO Dequeue Count FIF0 entries Task reschedules,

between 1 and maximum data dequeued
FIFO Dequeue Count FIF0 entries = zero Task enter WAIT state
Packet Pool Get Packet available Task reschedules,

Packet removed from Pool
Packet Pool Get No Packet available Task enters WAIT state
Packet Pool Put Task reschedules,

Packet returned to Pool
Memory Pool Get Memory block available Task reschedules,

block removed from Pool
Memory Pool Get Memory block available Task enters WAIT state
Memory Pool Put Memory block available Task reschedules,

block returned to Pool

Table 1.1: Interactions between Tasks and Hubs

OpenComRTOS-Suite 1.4.3.3 Manual

12 General Concepts

ond step during which the “something” is actually obtained. The actual transfer from one side to another is
governed by a Synchronising Predicate filter operation that is specific for the type of service and interaction
Entity. If a data transfer and buffering is involved, it is to be seen as a side-effect of the synchronization
performed by the matching filter. Figure 1.5 shows the available Hub types in OpenComRTOS 1.4.

In most cases the put request is performed by one Task while the get request is performed by another Task.
However, as the interaction is through Hubs, it can as well be that e.g. driver Tasks or hardware specific
ISRs put a Packet in a Hub. However, while an ISR can insert a Packet into a Hub on which a driver Task
could wait to Get from, no ISR should attempt to Get a Packet from a Hub. The reason is that ISRs are not
allowed to wait (polling is just burning cycles and monopolises the CPU when done inside an ISR) while
in such a set-up no other Task can ever insert a packet as the ISR will monopolise the CPU. If an ISR needs
to Get data it should get this data from an associated Driver Task that itself can wait it to Get from a Hub.

The general concept of a generic Hub is illustrated again in Figure 1.6

As OpenComRTOS supports distributed systems, by default, the interacting Tasks and Hubs can be located
on different Nodes. For example, the Puting Task can be located on Node A, the receiving Task can be
located on Node B and the Hub can be located on Node C. The data associated with such an interaction
can even be located on still other Nodes as memory pools are also distributed. It is even possible to accept
an interrupt on one node, passing it on via the network to another node and having the interrupt being
processed on that other node.

1.6 Application specific services

Although not part of this manual, OpenComRTOS Hubs and their associated services can be customized
in an application specific way without requiring a rebuild of the kernel. The developer needs to specify
the synchronization predicate function and predicate function as well as the associated Hub states. The
sytem generator needs to be adapted as well. This capability is decribed in the RTOS extension and porting
kit. On the application level this approach has many advantages. First of all, it provides for more safety
and scalability than with a traditionally designed RTOS. It also provides more performance as it avoids the
need to write a middleware layer, often on top of the underlying OS and requiring often multiple service
invocations to achieve the desired behaviour. Hence OpenComRTOS can be adapted to become another
RTOS as well, although the semantics might need some tweaking as most RTOS cannot support distributed
environments (e.g. because they pass pointers to local memory in the service calls).

1.7 A new concurrent programming paradigm

The fact that one can create his own services, all based on a universal and generic “Hub” entity, makes that
OpenComRTOS is much more than a network-centric RTOS. The concept of Tasks and Hubs embodies
the fundamental concepts one needs to write concurrent programs, whether the target is a single processor
system, a multicore systems, a parallel processing system or a widely distributed and loosely coupled
system. This universal character provides for a natural way of programming such systems. Programming
is in essence an activity whereby a model of a system is developed. Most systems (technical as well as
non-technical ones) are naturally described as a set of Interacting Entities. In OpenComRTOS, the main
Entities are Tasks and Hubs and the services they provide are the interactions. Interactions can be quite
complex, but most interactions while consist of a synchronization point, guarded by a logical condition.
When synchronisation has taken place, in a second step the real desired interaction will happen. E.g. it can
allow a waiting entity to resume its operation, or information and/or data can be transferred or an action
will be executed that acts on the external world (e.g. a motor is started). In OpenComRTOS this interaction
behaviour is neatly separated and hence it is functionally scalable. Hubs are also separated from the Tasks,
allowing scalability across networked Nodes.

One could argue that this type of concurrent programming is not really new. Indeed, a predecessor product

OpenComRTOS-Suite 1.4.3.3 Manual

1.7 A new concurrent programming paradigm 13

Fi
gu

re
1.

5:
G

ra
ph

ic
al

re
pr

es
en

ta
tio

n
of

th
e

di
ff

er
en

tH
ub

-t
yp

es

OpenComRTOS-Suite 1.4.3.3 Manual

14 General Concepts

Figure 1.6: General conept of the generic Hub

Figure 1.7: Possible distribution of Entities, involved in Task Interaction

OpenComRTOS-Suite 1.4.3.3 Manual

1.8 Inter-Node interaction 15

(called Virtuoso at the time) allowed a similar programming style, but it was practically impossible to
add new services. Virtuoso itself had found its inspiration in CSP (Communicating Sequential Processes),
a process algebra thought out by C.A.R. Hoare. In CSP, Processes interact only synchronously through
unidirectional channels. When they do, data can be passed from one process to the other and both processes
can continue. In Virtuoso as well as in OpenComRTOS, this behaviour was externalized, as well as more
complex semantics are supported. The Hubs are also independent of the Tasks, whereas in CSP the channels
are tightly coupled between the processes. Hence, we could argue that OpenComRTOS are a pragmatic
superset of CSP. Although the OpenComRTOS semantics were formally modelled and verified, we claim
less rigour than with the strict semantics of CSP. The benefits obtained are a higher usability for real-world
programming and more abstraction from the underlying implementation.

1.8 Inter-Node interaction

OpenComRTOS provides topology independent interaction between Tasks. All services, except when
dictated otherwise by hardware dependencies, are from the application’s Task point of view independent
of the location in the network of Nodes. This applies e.g. to Task management services as well as to the
L1 interaction Entities. The link hardware layer may implement the communication very differently from
one Platform to another.

While in OpenComRTOS Tasks can interface directly with the hardware via Interrupt Service Routines,
most often driver Tasks will implement the higher level functionality the hardware interfaces . In particular,
when multiple Nodes are present in the system, these Nodes will be able to exchange data through a
dedicated software supported hardware mechanism. Independently of the hardware implementation, we
call these dedicated communication mechanisms LINKS. OpenComRTOS defines dedicated Tasks, called
Link Driver Tasks, that implements the OpenComRTOS system level communication protocol. Of course,
in general, hardware will be accessed through a combination of an ISR and a Driver Task, but then a
hardware and application specific protocol will be used.

• A Link Driver Task is the only way to initiate transparent inter-node Link communication

• Any Link Driver Task communicates only to other Tasks via a dedicated Port associated with it. This
Port is called as a Task Input Port.

• Any Task communicates with a Link Driver Task only via a dedicated Port associated with it. This
Port is called the Driver Input Port.

• The HW itself is controlled and accessed by the ISR layer. This layer may communicate with the
Driver Tasks through shared memory and dedicated event signalling services.

• The Tasks, Link Driver Tasks and ISR layer interact with each other ONLY via the Kernel Task.

The interaction scheme is illustrated in Figure 1.8.

OpenComRTOS-Suite 1.4.3.3 Manual

16 General Concepts

Figure 1.8: Interactions between HW, ISR Layer, Driver Task and application Tasks.

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 2

Functional Design of the L1 Layer

Figure 2.1 presents the functional model of the OpenComRTOS Layer L1.

2.1 Task interactions

Entities that interact are a synchronizations and communications between the Tasks via intermediate Enti-
ties (e.g. Ports, Events, Semaphores, FIFOs, Hubs, etc.). To simplify the terminology, we call these Task
Interactions. All these Entities can be derived from a common generic Entity (at least conceptually) that
we called a “Hub”. Such a Hub provides first of all “synchronization” between “Puting”and “Receiving”
Tasks. Synchronisation happens through the use of a “matching filter” we called the Synchronisation Pred-
icate. It verifies that the conditions for synchronization are fulfilled resulting in e.g. a Task becoming ready
again. From the application point of view, one can consider that during the synchronization a “resource”
is made available from one Task to another, allowing the latter to continue when it gets the resource. The
resource itself can be the notification that a certain event has happened, a piece of data or e.g. a logical
entity that needs to be protected for atomic access.

Once synchronization has happened, the system will call the interaction specific Action Predicate. E.g.
making a Task ready again, returning data or e.g. copying data from one memory area to another one. In
general, one can imagine that a Hub can be used for very application specific interactions. An example
would be that an alarm signal would be monitored but when a threshold level is reached a command is
directly Put to an actuator to shut down a critical part of the application. This can be done without a
middle-ware layer resulting in much faster reaction time? Because most of the code is system code, the
risk for errors is also lower.

Hubs are used as synchronisation Entities between Tasks and operate by use of Packets sent and Getd by
Tasks. These packets are most fo the time pre-allocated Task Packets and hence hidden in the API. Only for
asynchronous services do we have to make the Packets explicit as multiple synchronization can be pending
and hence a packet must be used that comes from a general Packet pool. Hence, Hubs also decouple
Tasks when interacting and they can be located physically on different Nodes than the interacting Tasks.
As a result, Tasks are isolated from each other while this mechanism is inherently scalable and topology
independent.

2.1.1 Logical view of Task

In OpenComRTOS, the software runtime environment can run many Tasks on a single Node. Each Task is a
separate entity identified by its TaskID. The Task ID is a globally defined unique identifier in the distributed
system. A Task is therefore defined as:

18 Functional Design of the L1 Layer

Figure 2.1: Functional model of OpenComRTOS

OpenComRTOS-Suite 1.4.3.3 Manual

2.1 Task interactions 19

• A Task is a uniquely identified functional resource. It has its own context and can be considered as
an independent unit of execution.

• A Task can issue service requests. These are implemented as a local function within a Task’s
workspace. The first instruction of a Task’s function is called the entry point of the Task.

The Task Context is defined by the following two parts:

• Its Workspace (often called Stack Space). This is an area of data memory that is involved in the
logical operation of the Task. Normally, the logical data of a Task context is hardware independent.
The logical data is an explicit part of the context that the Task manages itself and hence contains only
data and variables that are only visible to the Task itself.

• Its CPU Context is the physical context of the Node. This is a set of data units that precisely defines
the current state of the CPU. The CPU Context is an implicit part of the Task Context, not directly
manipulated by the Task, but by the compiler, the CPU and its peripherals. Usually the CPU Context
consists of the state of the essential CPU and other HW registers, like the Instruction Pointer (IP),
Stack Pointer (SP), the Accumulating Registers, and the I/O registers. The CPU Context is specific
to the hardware (CPU + peripheral units, e.g. state information).

On any traditional CPU, only one Task can execute at a given time on a given Node. This is not a restriction
of OpenComRTOS but the result of the von Neumann architecture of most CPUs. This means that if there
are many Tasks running on the same Node, the scheduler will divide the available processing time over the
Tasks according to a Task scheduling policy. When using a Priority based scheduler the priorities are to be
assigned by the application developer who has to assure that all Tasks can meet all deadlines.

During their operation the Tasks may request the Kernel for services such as Putting or receiving Packets
via Ports. Typically, the Tasks will wait for events like the completion of such requests. Note that Tasks
can run independently without issuing any service request, although this can lead to starvation for other
Tasks. The “data” fields of a sent or get Packet may be “empty” (i.e. pure synchronization without data
communication exchange).

A Task starts by being started from another Task or during kernel initialization. It may have finished, which
is called STOPPED

Hence, a Task is further defined by its state. It is an operating resource that is always in only one of the
following states, managed by OpenComRTOS:

• INACTIVE (the initial state)

• RUNNING (the Task is running on the CPU)

• WAITING (for a service request to complete)

• READY (to run and hence waiting to run in de ready list)

• SUSPENDED (orthogonal state to prevent the Task from running)

• STOPPED (used before a Task is reinitialized)

Note that the normal states in operation are RUNNING, WAITING, READY and STOPPED. The first
three ones are sometimes collectively referred to as “ACTIVE”. The SUSPENDED state is the result of an
explicit suspend request and is orthogonal to the normal states. This means that a waiting status remains
possible when the Task is being suspended. It can only be changed by a resume request issued by by
another Task. Hence, a Task should not suspend itself as the suspend state is introduced mainly to be able
to handle exceptional application level conditions that require e.g. to preventing a Task from doing any
potential harm.

OpenComRTOS-Suite 1.4.3.3 Manual

20 Functional Design of the L1 Layer

Note also that stopping a Task is a much more drastic operation as this will also destroy the whole Task
context and all information will be lost. Therefore precautions are needed to stop a Task in a correct way.
This is typically achieved by calling an abort handling function before a new Task context is created.

When many Tasks run on the same Node, they compete for the CPU time in order of their Priority. A
higher Priority means that when several Tasks are ready to run, the one with the highest Priority will run
first. Hence, a Task is further defined by its Priority

A Task is an operating resource that has a PRIORITY. A Priority has a value in the integer range from 0 to
255, with 0 being the highest Priority.

To provide many Task instances with the same (local) function, OpenComRTOS allows Tasks to start with
a list of Task specific arguments. The functional code of the Task must be reentrant as well.

Finally, at the system level but hidden from the application programmer, each Task including the Kernel
Tasks and Driver Tasks, have a dedicated Input Port, This Port is only accessed by through and by the
Kernel.

2.1.2 Logical view of Packets

In OpenComRTOS, the interacting Tasks interchange Packets of a fixed size. The “fixed size” of a Packet
means that the physical size of Packet is always the same for a given network and is defined at system
generation time. The real size of the interchanged data in the Packet can not be greater than this size but
the system can use multiple Packets to execute larger data transfers. A Packet contains so called header
information that includes a number of header specific fields, including the size of the user data (sometimes
called payload). The Packet size is defined at compile time and can be application specific but it can never
be smaller than the space needed for the header fields.

In each concrete case, the interchanged Packet is also supplied with the exact length of the embedded
interchanged data.

Hence, a Packet is an entity that consists of:

• A fixed size header including:

– Service specific fields

– the (user) Data Size field

• The data limited in length to the Data Size field

• Remaining unused space of the data portion of the packet (in any).

The Data Size of a Packet can be zero or at most be equal to the Packet Size minus the size of Header. The
user is warned that the system will only copy the data in the payload section after synchronization in a Hub
when this is part of the semantics of the service. E.g. with an Event no data will be copied, but with a Port
data will be exchanged limited by the datasize parameter.

The basis of OpenComRTOS is the L1_Packet, with an application specific defined size. Such a Packet is
sufficient to implement the L1_services like Task scheduling and Puting and receiving Packets to and from
a Hub.

In the case of all “single-phase” services, these Packets are statically allocated at compile time. For some
services, i.e. the “two-phase” services, the calling Task needs to use a dynamically allocated Packet. This
Packet is allocated first from a Packet Pool that is managed by the local Kernel Task on the node. For
more explanations on these single-phase and two-phase services see the service descriptions further in this
document.

OpenComRTOS-Suite 1.4.3.3 Manual

2.1 Task interactions 21

NOTE: In the text often the terms Put_ or Get_Request_Packet will be used. Often, this is still the same
physical Packet but whose function is changed by an update of its header fields depending on the status of
its processing.

2.1.3 Logical view of the generic L1 Hubs

When requesting a L1 kernel service, OpenComRTOS implements it by Puting a Packet to the specified
entity called the L1 Hub. If the service requires synchronization, a reference to the packet will be stored. In
the implementation, copying of Packets is avoided and a pointer to the Packet will be passed. This implies
that a Packet is owned by the Task that uses it to avoid that multiple Tasks can modify a Packet’s content
or that the kernel Task assures that only one Task can write to the Packet at a given time. Similarly, when
receiving a Packet, a Task Gets it from the specified Hub. The Packet having been delivered to the Hub by
a Putting Task. Hence, a Hub is defined as follows: “A Hub is an identifiable entity with a globally unique
identifier in the distributed system.”

The purpose of a Hub is defined as follows:

• A Hub is an entity used to provide services between interacting Tasks, i.e. the Hub will implement
the interaction. At the kernel level this behaviour is achieved by interchanging Packets between
interacting Tasks through the Hub.

• The synchronization, eventually data exchange, is handled by the Kernel and depends on the specific
behaviour defined by the packet header fields that are specific to the service request.

If a Task Puts a Service Request to a Hub, and no other Tasks have yet supplied a matching service request-
Packet to that Hub, then the requesting Task will wait until such matching request Packet arrives at the
Hub. This will be detected by the matching filter. Note that any number of Tasks (more than one) may Put
service requests (i.e. Packets) to the same Hub at any time. Note, that this behavior is symmetric, although
the behavior is often specified in terms of “Putting” Tasks en “receiving” Tasks. Hence, in the general case
there will be waiting lists on both sides of a Hub.

“A Hub is an entity that buffers the service requests using Packets until synchronisation occurs.”

The sent and get service requests are “buffered” in a Hub by means of a Priority-sorted list of Packets. The
Priority of an element in the list is inherited from the requesting Task.

Above paragraphs explained the basic functionality of a Hub: synchronization between Tasks, making
resources available and Tasks requesting resources all using Packets. Such a Hub has also some attributes,
often filled in at runtime, that provide the service specific semantics. E.g. a counter can keep track of the
number of Put or Get requests, the Hub can have an owner Task when used to provide atomic access and
a Ceiling Priority can be associated with the Hub to provide support for Priority inheritance algorithms in
the Task scheduler. It is also possible that some Hubs use buffers where requests or data are kept awaiting
the synchronization to happen. Finally, after the synchronization often a callback function (the action
predicate) will be called. This function can e.g. copy the data associated with the specific service after
synchronization has happened. The Synchronising Predicate and the Action Predicate also enable to define
new application specific services without the need to reimplement the basic Hub functionality. E.g. the user
could for example define a Hub called an “AlarmWatcher”. Driver Tasks could the Put sensor reading on a
regular basis to this AlarmWatcher. The AlarmWacher then compares the sensor values with a pre-defined
threshold value and when the threshold is surpassed, it activates an “Alarm Raising function” e.g. to disable
the actuator driver Task. A similar mechanism can be used to

According to the above mentioned relationships between Tasks, Hubs and data Packets. Note that while
two waiting lists are indicated, for some classes of services (e.g. Events, semaphores, resources) only one
of them will be used. The State attribute is dependent on the Hub Type and will contain information such as
Owner Task, Ceiling Priority, Event flag, Semaphore count, and the Fifo buffer count. The Synchronization
Predicate is a logical function that checks that synchronization can happen. The Synchronization Action

OpenComRTOS-Suite 1.4.3.3 Manual

22 Functional Design of the L1 Layer

is a function to update the State when synchronization happens and to initiate the required action. The
Synchronization Predicate and Synchronization Action are both dependent on the Hub Type, i.e. L1 service
class.

2.1.4 On scheduling for real-time

One of the attributes of a Task is its Priority, defined to meet the application’s timing requirements. The
Priority will be defined by e.g. using a Rate Monotonic Analysis algorithm. In the “normal case” behaviour,
this Priority attribute is used to sort in order of Priority all waiting lists, inclusive the lists of Tasks that are
ready to run. Often this is the result of a service request that was fulfilled. However, it is not unlikely that
while a Task is put in the ready list, another Task of a higher Priority is also requesting the same service
(or resource). If this resource is unique (e.g. an Event was raised on which both Tasks are waiting) then
the resource should be granted to the highest Priority one at the moment this Task became active (and not
to the Task that was first inserted in the ready list). Hence, OpenComRTOS waiting lists are sorted in order
of Priority.

Once the requesting Task become ready again, it is inserted on the ready list waiting to become active.
If in the mean a higher Priority Task also requests the same resource, it will be blocked by the lower
Priority Task to which the resource was already granted. In OpenComRTOs the solution for this problem
is achieved by decoupling the granting of the resource and the resource becoming available.. While the
waiting Task is removed from the waiting list and inserted in the ready list, the resource is only ‘reserved’.
When this Task reaches the head of the ready list, a check is made to verify if it was still the Task with the
highest Priority that was waiting for the resource. If not, the resource is granted to the other Task. These
issues are applicable to all services, but in practice this is mostly an issue for resource related services. In
OpenComRTOS, support for this functionality is provided using an application specific service.

Another issue is that once a Task owns a resource, it prevents other Tasks of higher Priority from receiving
the resource. This is called “blocking” and the problem is called the ‘Priority Inversion’ problem. Given
that a Task with an intermediate Priority can then start running, the lower Priority Tasks can block a highest
Priority Task for an indeterminate period of time. This problem is created by the need for atomic access in
the application, and while atomic access cannot be avoided, the blocking time can be minimized. This is
achieved by raising the Priority of the lower Priority Task to the Priority of the waiting Task, reducing the
blocking time. Often this Priority will be limited to a Ceiling Priority. The issue is also complicated by the
fact that a Task can issue nested requests, i.e. requesting a new resource while already locking a granted
resource. These issues are applicable to Resources, Memory Maps and Memory Pools but are in practice
only implemented for resources as they define unique critical sections.

NOTE: When locking a Resource, the Task may block other Tasks requesting this Resource later. Hence,
this time should be kept as short as possible. For this reason, it is assumed that while a Task locks a
Resource it will not request any other service that can result in a waiting condition as this could result in
long series of dependencies with no control over the real-time behavior. For the same reason a Task should
not be stopped when owning resources. The Kernel cannot prevent such situations, so it is left to good
programming practice.

2.1.5 On Timers

OpenComRTOS also maintains a Timer List. This is a List sorted on a Timer value holding events that need
to happen in the future. When the event happens (its Timer value becomes a past event versus the actual
Time), the Event is enabled and a typical action will be to insert a Packet into the Kernel Task Input Port.
A typical event is a TimeOut related to a service request. Timer Events can be inserted into the Timer List
as well as removed from the Timer List. Timers can also be used to implement Timer based scheduling.

OpenComRTOS-Suite 1.4.3.3 Manual

2.2 Inter-node interactions 23

2.1.6 On runtime errors

OpenComRTOS adopts a generic mechanism for handling runtime errors. No distinction is made between
kernel errors and application errors. It is also possible that the error signal is to be seen as a warning,
e.g. when a semaphore count reaches a threshold value to prevent forthcoming issues. When an error is
raised, the kernel will insert an error package with all relevant into the input port of an error handling Task.
This Task should run at the highest Priority one of all application Tasks on a given node. The application
developer must define the actions to be taken when such an error is raised.

2.1.7 Logical view of the Packet Pool

Every Task has a pre-allocated Packet that can be used for single phase interactions between Tasks. In
order to allow two-phase interactions the Task has to allocate extra Packets from a Packet Pool that is
located on its local Node (see 2.3.1 on page 25). In reality, this Packet Pool is also a Hub with a specific
field that allows the kernel service to allocate or deallocate a packet from the Packet Pool. In this case, all
Packets will be L1 Packets. Note that the same mechanism also supports different types of Packet Pools.
E.g. the Packets can have a user defined size and are arranged in an array or they have a variable size. In
these cases the ActionPredicate will be different and service specific names are just, e.g. MemoryArray or
MemoryPool.

After a Task has Getd and processed a Packet, the Task has to deallocate this Packet to return it to the
Packet Pool that is located on its local Node.

• The Packet pool of a Node is an operating resource that maintains a list of free Packets.

• If a Task requests a Packet from the Packet Pool, and the Packet Pool has no free Packets available
then the requesting task becomes waiting until another task has de-allocated a Packet so that this
Packet can be allocated to satisfy the request.

The requests to allocate Packets are “buffered” by means of a Priority-sorted list. This is actually a list
of pre-allocated packets used by OpenComRTOS to implement the service requests. The Priority of an
element in the list is inherited from the requesting Task.

2.2 Inter-node interactions

2.2.1 Logical view of Link Drivers and inter-node interactions

OpenComRTOS implements Inter-node Links (see Section 1.4) using the relationship between a interacting
Task and a Link Driver Task, explained in Section 3.2.

• The LinkTX of an inter-node Link is implemented through a dedicated Link Driver Task that trans-
mits Packets to the directly connected remote Node via the appropriate hardware.

• The LinkRX of an inter-node Link is implemented through a dedicated SW entity in ISR LAYER
that injects the Getd Packets in the Kernel Port. The Kernel will deliver the Packets to the appropriate
local Ports and Task Input Ports, or route the Packets to the LinkTX of the appropriate Inter-node
Links (i.e. to a Driver Input Port) as applicable.

A Link Driver Task will implement the following behaviour:

• The Link Driver Task is waiting for a Packet on the Driver Input Port.

OpenComRTOS-Suite 1.4.3.3 Manual

24 Functional Design of the L1 Layer

Figure 2.2: Communication between Inter-node Links and Tasks

• The Link Driver Task will process the Packet on the Driver Input Port. (e.g. transmitting the packet
over a LinkTX)

The interaction scheme of the involved entities is shown in Figure 2.2.

Note: The Tasks, Link Driver Task and ISR layer interact with each other ONLY via the Kernel, as de-
scribed below.

To provide the interacting Tasks with a simple and sufficient way for addressing the INTER-NODE LINKs,
OpenComRTOS has adopted the following mechanism:

An inter-node Link is addressed by the Input Port of the Driver Task that is driving the link.

When a Task calls a service that uses a remote Hub as synchronising entity, the following sequence of
actions is performed. Note that we illustrate this mechanism using the exchange of a Packet, but the same
mechanism is used for all L1 services:

• L1_PutPacket_W (Put_Request_Packet, Remote Hub) or vice versa

• L1_GetPacket_W (Get_Request_Packet, Remote_Hub)

These functions will in the context of the Task update the Header of the Packet to be sent to a Hub and
insert it in the Kernel Input Port. The Kernel will call the Router function to forward the request Packet
to the Remote Hub using a local TX Driver Input Port. The Driver Task then forwards the Packet to the
destination Node by the lower level LinkTX driver protocols.

When the Return Packet arrives, the Kernel will make the Task ready again and the task can retrieve the
return value from its preallocated Packet.

OpenComRTOS-Suite 1.4.3.3 Manual

2.3 Multi-tasking 25

When two inter-node Links of the same Node are used to pass a Packet from one remote Hub to another
(so-called through-routing), then only one operation is performed by the Link Driver Task that has Getd
the Packet from the HW. After having passed on the Packet to the Kernel, the Kernel will insert the Packet
in the Driver Input Port of the output LinkTX driver Task

2.2.2 Logical view of the Router

The Router provides a way to map a target Node with a Driver Input Port that has to be used to route the
Packets. The Router is used in three cases:

• Puting a Packet to a remote Hub

• Receiving a Packet from a remote Hub

• Forwarding a Packet from a neighbouring node to another neighbouring node

2.3 Multi-tasking

As defined in Section 1.1, multiple Tasks may run on a single Node but only one Task can execute at a
given time on a given Node.

2.3.1 Definition of multi-tasking

Multi-tasking as provided by OpenComRTOS, is defined as follows:

• Multi-tasking is Priority based, such that a higher Priority Task that is ready to run gets the CPU in
favour of a lower Priority one (that is also ready to run)

• The multi-tasking is pre-emptive, such that when a higher Priority Task becomes ready to run, it will
pre-empt immediately a running Task of lower Priority (hence the scheduler will switch contexts)

• The multi-tasking performs Round Robin scheduling among equal Priority Tasks that are ready to
run. Time-slicing, when enabled can only happen between Tasks of equal Priority.

2.3.2 Logical view of the Context Switch

Logically, multi-tasking is supported by an atomic operation that switches the CPU context from one Task
(to deactivate the running Task) to another one (to continue with another ready Task). This operation is
called the Context switch.

“The Context Switch is an atomic (non-interruptible) operation that saves the CPU context of the running
Task that is being deactivated, and restores the CPU context of another ready Task, that is being activated
to run.”

In most practical implementations, the context Switch restores the essential CPU registers in such a way,
that the resumed Task continues running right after the Context Switch from the point where its context
was saved. The re-activated Task runs like if it was not ever deactivated. Note however that such states are
orthogonal to the waiting and suspended states.

OpenComRTOS-Suite 1.4.3.3 Manual

26 Functional Design of the L1 Layer

2.3.3 Logical view of the Kernel

The only way the Tasks can invoke the services of OpenComRTOS Layer L0 is to request the services from
the Kernel, which runs as a separate Task.

“The Kernel of OpenComRTOS is a dedicated Task that serves the service requests from the running Tasks
and other software layers (e.g. from a HW ISR and Driver Tasks).”

All requests are passed to the Kernel using Packets, delivered to a dedicated input Port called the Kernel
Port.

“The Kernel Port is the only Port where the Packets are delivered directly in the context of a Task that
inserts the Packet. Only the Kernel Task delivers the Packets to all other Ports.”

OpenComRTOS defines the following:

• When a Packet is delivered to the Kernel Port, the requesting Task is set in the WAITING state.

• The Kernel sets the Requesting Task in the READY state only after the service request has been
served (completed).

• The Kernel IS NOT ALLOWED TO access the Packet after having set the requesting Task back in
the READY state.

Each service of the Kernel is provided as a dedicated function call, exported to other SW layers as a part of
the Kernel API, Section 10.1 (page 115) lists the complete API provided by the Kernel.

The template algorithm describing how a Task requests a service from the Kernel is as follows:

1. Having passed a request to the Kernel, a Task goes into the waiting state, resulting in switching the
context to the Task with the highest Priority among the Tasks that are READY to run.

2. The Kernel Task has a Priority higher than any other Task (incl. Link Driver Tasks).

3. The Kernel Task will process all requests on its Input Port until the waiting list is empty before
calling the scheduler to execute the next highest Priority Task on the ready list.

Tasks from the Application Layer are not the only ones that may request a service from the Kernel. In
particular, a HW ISR can request a service. As the HW ISR environment (further ISR LAYER) cannot be
set in a waiting state, OpenComRTOS defines the following restriction:

• The ISR LAYER is only allowed to Put a Packet to the local Kernel Task Input Port.

• The Packets, being sent, are delivered to the Port in the context of the ISR LAYER (i.e. without
switching to the Kernel Task).

• These Packets will contain a Service ID that will be used by the Kernel Task to invoke a specific
function as needed by the application.

• It is possible to have another Task Get the return code from the ISR issued service (e.g. typically
used by a Driver or monitoring Task).

Running as a Task, the Kernel performs the following sequence of operations in a loop. When the Kernel
has processed all requests retrieved from its input Port, it comes in the state of waiting for other requests,
and as such passes the CPU back to other Tasks.

OpenComRTOS-Suite 1.4.3.3 Manual

2.3 Multi-tasking 27

Figure 2.3: Template scenario of the serving of a request to the Kernel

OpenComRTOS-Suite 1.4.3.3 Manual

28 Functional Design of the L1 Layer

Figure 2.4: The Kernel Loop

OpenComRTOS-Suite 1.4.3.3 Manual

2.3 Multi-tasking 29

2.3.4 Logical view of the Scheduler

For providing multi-tasking OpenComRTOS has a Scheduler, that is defined in the following way:

• The Scheduler is a functional entity that decides which Task has to execute next, among all Tasks
ready to run.

• To know what Tasks are READY to run, the Scheduler manages a dedicated (and only one) list of
Tasks, called the READY list.

• The Scheduler is invoked to decide what Task to run next only in case of the following state changes
in the OS environment:

– a Task becomes ready to run and has been put into the READY list and it has the highest Priority
of all Tasks competing for the resource it reserved to use

– If a Task is no longer READY to run, it will be removed from the READY list.

The READY list is a Priority-ordered list of Tasks.

• The Scheduler is the only software module that does the Context Switch between Tasks

• The Scheduler DOES NOT decide which Task becomes READY to run and which Task becomes
WAITING, it just schedules the Task that has the highest Priority on the READY List. The decisions
are always made by the logic of interaction (see Section 2.1.3) or by the logic of the service requested
of the Kernel Task by a Task. (see Section 2.3.3).

OpenComRTOS-Suite 1.4.3.3 Manual

30 Functional Design of the L1 Layer

OpenComRTOS-Suite 1.4.3.3 Manual

Part II

Installation Instructions

Chapter 3

Installation Instructions

Introduction

OpenComRTOS is one of the few formally developed real time operating systems. This rigorous formal-
ism has two benefits. First of all: good performance. This good performance is reflected in the small
code size and the fast execution speed. This manual will guide you through the installation process of
OpenComRTOS-Suite 1.4 which includes an OpenComRTOS win32 port and the corresponding exam-
ples. After guiding you through the installation process, the manual explains how to build the provided
examples.

3.1 OpenComRTOS-Suite Installation Instructions

This section details how to setup the OpenComRTOS-Suite-1.4.3.x, which requires the MinGW toolchain,
and the CMake build system. These instructions assume that you have received an USB key from Altreonic,
if this is not the case you can obtain all necessary software from the Internet, the links are provided in the
Bibliography.

3.1.1 MinGW Tool-chain for Windows

MinGW [1] is a GNU GCC to compile programs for MS-Windows. It is available both under MS-Windows
and Linux, which is one of the reasons why we use it. The enclosed USB key contains version 5.1.6. of
MinGW, to install it follow these steps:

1. Start the installation process by executing:
OpenComRTOS_Suite_1.4\Win32\MinGW32\MinGW-5.1.6.exe
contained in the USB key you received from us.

2. When the installer asks whether to “Download and install” or to “Download only” (Figure 3.1a) se-
lect “Download and install”. The necessary files have been downloaded previously, and the installer
will use these files, instead of downloading them again.

3. When the installer queries you which package of MinGW to install (Figure 3.1b), select “Current”.

4. In the component selection screen (Figure 3.1c) select to install “MinGW Make”. This component
is an essential part of the OpenComRTOS build system.

34 CONTENTS

(a) The MinGW installer operation selection screen (b) The MinGW installer package selection screen.

(c) The MinGW installer component selection screen.

Figure 3.1: MinGW installer screens

OpenComRTOS-Suite 1.4.3.3 Manual

3.1 OpenComRTOS-Suite Installation Instructions 35

3.1.2 Adding MinGW to the System Binary Search Path

The MinGW installer does not add the binary directory of MinGW (“;c:\MinGW\bin”) to the System
Binary Search Path of MS-Windows. This section explains the necessary steps to achieve this for MS-
Windows XP, the procedure is similar for MS-Windows Vista and MS-Windows 7. Follow these steps to
add the MinGW tools to the system wide Binary Search Path:

1. Add the binary path of MinGW to the PATH: Open the System Properties (right click on “My Com-
puter” and select “Properties”), see Figure 3.2a.

2. There select the tab labeled “Advanced”, in which you click on the Button labeled “Environment
Variables” , see Figure 3.2b.

3. In the list box “System Variables” select the variable “Path” and click on the button labeled “Edit”
(you can also double click on the list entry) , see Figure 3.2c.

4. In the dialogue “Edit System Variable” (see Figure 3.2d) add the following to the end of the Edit
Field labeled “ Variable value”: “;c:\MinGW\bin”. Be careful not to delete the previous value of
“Path” because otherwise MS-Windows will not work correctly any longer.

3.1.3 Installing the SVM Toolchain

To compile OpenComRTOS Tasks that can be run inside the Save Virtual Machine for C (SVM), it is
necessary to install a toolchain that is capable to produce pure ARM-Thumb-1 binaries. The SVM build
system supports the arm-none-eabi-gcc as compiler and linker. The provided USB Memory Key contains
the CodeSourcery toolchain for ARM, called “Sourcery G++ Lite toolchain for ARM EABI” [2]. To install
the toolchain execute the file:
arm-2009q1-161-arm-none-eabi.exe

During the installation apply the following settings:

• In the ‘Choose Install Set’: chose the Minimal installation, see Figure 3.3b.

• In the ‘Add to Path?’: chose ‘Modify PATH for all users’, see Figure 3.3a.

This completes the setup of the toolchain necessary to compile tasks for the SVM.

3.1.4 CMake Build System

OpenComRTOS uses the CMake build system [3] (version 2.6 or better) to build itself and applications
using it. The following steps guide you through the installation process:

1. Start the installation process by executing:
OpenComRTOS_Suite_1.4\Win32\cmake-2.6.4-win32-x86.exe
from the enclosed USB key.

2. In the screen “Install Options” select “Add CMake to the system PATH for all users” (see Figure
3.4). This adds the CMake binary directory to the System Binary Search Path, which is necessary in
order for the OpenComRTOS build system to be able to use CMake.

OpenComRTOS-Suite 1.4.3.3 Manual

36 CONTENTS

(a) Opening the System Properties Dialogue (b) Opening the Environment Variables Dialogue

(c) Opening the Dialogue to modify the variable Path (d) Modifying the value of the variable

Figure 3.2: Setting the System Binary Search Path

OpenComRTOS-Suite 1.4.3.3 Manual

3.1 OpenComRTOS-Suite Installation Instructions 37

(a) Setting the Minimal Installation Option (b) Modifying the PATH for all users

Figure 3.3: Code Sourcery Installer Settings

Figure 3.4: Adding CMake to the System Binary Search Path

OpenComRTOS-Suite 1.4.3.3 Manual

38 CONTENTS

3.1.5 Installing the OpenComRTOS-Suite

The OpenComRTOS-Suite installation image is available on the included USB key. To install it, exe-
cute: “OpenComRTOS_Suite_1.4\Win32\OpenComRTOS-Suite-1.4.3.xṁsi”, where ‘x’ is
a number representing the patch-level of the MSI. After this step the Altreonic OpenComRTOS-Suite 1.4
including the OpenComRTOS Kernel Images for Win32 is installed.

OpenComRTOS-Suite 1.4.3.3 Manual

3.2 How to run an Example 39

Figure 3.5: Topology of the Demo_W example

3.1.6 Installing an additional OpenComRTOS Kernel Image

The OpenComRTOS-Suite supports many other targets than just MS-Windows. The additional targets get
shipped in form of a so called Kernel-Image, which is a tar.gz-file containing the libraries, metamodels,
examples and documentaiton for the given target. To install the kernel image, extract it, using for instance 7-
zip1, and then copy its contents (directories: examples and targets) into the OpenComRTOS-Suite directory.
During the copy operation you’ll be prompted that the kernel image contains files that are already present.
These files can be safely overwritten, as these are common files shared among all Kernel-Images. Warning:
It is your responsibility to ensure that you are not mixing different versions of kernel images!.

3.2 How to run an Example

This section first explains how to build one of the provided examples, before discussing each example
in detail. All examples are located in the folder ‘Examples\win32’ below the OpenComRTOS-Suite
installation directory.

1. Start OpenVE:
In the Start Menu of MS-Windows select open the group ‘OpenComRTOS-Suite-1.4.3.x’ (x repre-
senting the patch-level of OpenVE). Inside this group click on the entry labeled ‘OpenVE’ to start
OpenVE.

2. Open the ‘Demo_W’ project in OpenVE:
In the menu-bar click on ‘File’ and then on ‘Open Project’ to open the ‘Open Project’ dialogue of
OpenVE. Now navigate to the folder ‘examples\GraphHostServer\Demo_W\Demo_W.ove’’
below the OpenVE installation directory (usually c:\OpenComRTOS-Suite-1.4.3.x). There,
select the file ‘Demo_W.ove’ and click on the button labeled ‘open’ to open the project. You should
now see a topology consisting of a Win32 Node, similar to the one shown in Figure 3.5. The topology
diagram is a graphical representation of the project-topology.

3. Check the compiler settings for the Win32Node: Open the ‘Properties’ pane on the right hand side
by clicking on ‘Properties’ and then pinning it down, using the little pin in the upper right corner of

1http://www.7-zip.org

OpenComRTOS-Suite 1.4.3.3 Manual

http://www.7-zip.org

40 CONTENTS

Figure 3.6: Application Diagram of the Demo_W example

the Window. Left click on the Win32 node to display its properties. Now check whether or not the
property ‘Compiler’ refers to the compiler to use for Win32 Nodes on your system (The MinGW
compiler which you installed in Lecture 1)2.

4. Take a look at the Application Diagram for the example (Figure 3.6). In the Application diagram the
developer specifies Tasks and Hubs and their interactions. All necessary code to reflect the changes
in the Application diagram gets automatically generated. The diagram updates itself whenever there
are changes to the source code, this ensures that both source code and diagram are consistent at all
times.

5. Build the project:
Compile the example application using the menu-item ‘Build’ form the ‘Build’ menu. The build run
should end with: “Build successful”.

6. Execute the generated binary:
c:\OpenComRTOS-Suite-1.4.3.x\examples\GraphHostServer\Demo_W\Output\-
bin\win32_node.exe

3.3 Summary

This document started by giving the installation instructions for OpenComRTOS-Suite 1.4 and its depen-
dencies. The second part of this document detailed how to build the supplied examples.

2If you followed the instructions given in Lecture 1, the compiler should be set to either “c:\MinGW\bin\-
mingw32-gcc.exe” or “mingw32-gcc.exe”.

OpenComRTOS-Suite 1.4.3.3 Manual

3.3 Summary 41

Figure 3.7: Screenshot of the running Demo_W example

OpenComRTOS-Suite 1.4.3.3 Manual

42 CONTENTS

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 4

Installing ARM Cortex M3

Introduction

OpenComRTOS is one of the few formally developed real time operating systems. This rigorous formalism
has two benefits. First of all: good performance. This good performance is reflected in the small code size
and the fast execution speed. The second benefit is the usability. Due to the formal development, the user
interface is clean and the usability is high. Nevertheless, before OpenComRTOS can be used on the ARM
target, some setup work is necessary.

The following section presents a step by step manual which guides the user from the ‘OpenComRTOS
bundle for ARM and Win32’ towards a working development environment.

This document is a step by step guide on how to bring up the OpenComRTOS LM3S6965 Evaluation kit.
Section 4.2 covers the setup of the LM3S6965 Evaluation Board from Luminary Micro. While Section
4.3 details how to build a heterogeneous system consisting of an ARM -Node and a Win32-Node. Finally,
Section 4.4, details how to retrieve trace information from an ARM node.

4.1 OpenComRTOS-Suite Installation Instructions

This section details how to setup the OpenComRTOS-Suite-1.4.3.x, which requires the MinGW toolchain,
and the CMake build system. These instructions assume that you already installed OpenComRTOS-Suite
1.4 for MS-Windows, as described in Section 3.1.5. Furthermore, it assumes that you have installed the
CodeSourcery Toolchain for arm-none-eabi, as detailed in 3.1.3.

4.1.1 Installing the OpenComRTOS Kernel Image for NXP-CoolFlux

This image contains not only the binary distribution of OpenComRTOS for NXP-CoolFlux, but also a
number of examples for evaluation purposes. Section 5.2 explains how to build the examples and the
specialties of the NXP-CoolFlux port. The installation instructions given in Section 3.1.6, on page 39
apply.

4.2 Setup of the LM3S6965 Development Board

This section details all the necessary steps to setup the LM3S6965 board under MS-Windows. After this
section, you will have all necessary tools on your system to compile programs and configure the LM3S6965

44 CONTENTS

Figure 4.1: MS-Windows device manager with the three Stellaris Devices highlighted

board.

4.2.1 FTDI Driver Installation

In order to use the Lumniary Micro LM3S6965 board under MS-Windows it is necessary to install the
device driver for the included FTDI chip

1. Attach the evaluation board to the PC using the provided USB cable.

2. When MS-Windows prompts you which driver to install instruct it to search in the directory ‘Luminary_FTDI_Driver’.

After MS-Windows has completed the driver installation you should see the following devices in the Device
Manager of MS-Windows (also see Figure 4.1):

• Ports (COM & LTP)

– Stellaris Virtual COM Port (COMX) ‘X’ is the Com port number assigned to the RS232 port
provided by the ARM board.

• Universal Serial Bus controllers

– Stellaris Evaluation Board A
– Stellaris Evaluation Board B

If any of these devices is not properly installed, you have to manually install the drivers by selecting ‘Update
Driver Software...’ from the properties menu of the device (right click on the device).

4.2.2 Installing the LM Flash Programmer

In order to be able to download a program to the LM3S6965 evaluation board, it is necessary to install the
Luminary Micro Flash Programmer. A Microsoft Installer Image containing the Luminary Micro Flash

OpenComRTOS-Suite 1.4.3.3 Manual

4.3 Building and Running a Heterogeneous System 45

Figure 4.2: Topology of the Semaphore Example

programmer (LMFlashProgrammer.msi) is available on the USB Memory key. To install simply
executed the file, and follow the displayed instructions.

This completes the setup of the Luminary Micro LM3S6965 Evaluation Kit and the necessary toolchain.

4.3 Building and Running a Heterogeneous System consisting of an
ARM Node and the Win32 Node

This section guides you through the necessary steps to run an already existing project using the provided
ARM kit. Section 4.3.1, explains the general prepartions of an ARM example with a special focus on
linking the ARM-Node with a Win32-Node RS232 link technology. While section 4.3.2 explains how to
use TCP-IP over Ethernet to link ARM-Node with a Win32-Node.

4.3.1 Semaphore Loop using RS232 link Technology

These instructions concentrate on one the Semaphore-Loop example but are applicable to the other ARM-
Examples as well:

1. Open the project: ‘c:\OpenComRTOS-Suite-1.4.3.x\ArmExamples\Semaphore\Semaphore.ove’.
This will open the topology diagram (Figure 4.2).

In the Topology check: Win32Node Compiler, ArmNode Compiler;

2. Adjust the topology to the concrete execution environment:
The provided examples were developed and tested in an environment different from where you will
execute them. It is therefore necessary to adjust them to your environment. There are three things
that need to be checked:

(a) Compiler of the Win32Node: Open the ‘Properties’ pane on the right hand side by clicking
on ‘Properties’ and then pinning it down, using the little pin in the upper right corner of the

OpenComRTOS-Suite 1.4.3.3 Manual

46 CONTENTS

Figure 4.3: Setting the Link Port Parameters for the Win32 UART driver

Window. Left click on the Win32 node to display its properties. Now check whether or not the
property ‘Compiler’ refers to the compiler to use for Win32 Nodes on your system1.

(b) Compiler of the ArmNode: Open the ‘Properties’ pane on the right hand side by clicking
on ‘Properties’ and then pinning it down, using the little pin in the upper right corner of the
Window. Right click on the ARM node to display its properties. Now check whether or not
the property ‘Compiler’ refers to the compiler to use for Win32 Nodes on your system. If not
adjust it2.

(c) RS232 Device of the Win32Node: To adjust this to the correct setting, right-click in the Topol-
ogy view, on the node labeled ‘Win32Node’, to open the properties menu. Inside this menu,
click on ‘Node Configuration’, to open the Node Configuration dialogue, there select the tab
labelled ‘Link Ports’, see Figure 4.3, which displays the configured Link Ports for this node.
On top you will see a combo-bos which lists all configured link ports for this node. Select the
one named ‘UartPort’ and check that the property ‘PortName’ corresponds with the COM port
assigned to the Stellaris UART device.

3. Build the project:
Compile the example application using the menu-item ‘Build’ form the ‘Build’ menu. The build run
should end with: “Build successful”.

4. Execute the project:

(a) Download the program to the ARM board:
To download the generated binary to the LM3S6965 Evaluation Board use the ‘Luminary Micro
Flash Programmer’ utility. In the tab ‘Configuration’ select ‘LM3S6965 Ethernet Evaluation
Board’ (Figure 4.4a) and in the tab ‘Program’ (Figure 4.4b) select the previously generated
bin-file for the ARM node :
c:\OpenComRTOS-Suite-1.4.3.x\ArmExamples\Semaphore\Output\bin\-
ARM_Node.bin

After flashing the ARM board, press the RESET button on the board.
1If you followed the instructions of Tutorial 1, the compiler should be set to either “c:\MinGW\bin\-

mingw32-gcc.exe” or “mingw32-gcc.exe”.
2If you followed the instructions given in Tutorial 1, the compiler should be set to “arm-none-eabi-gcc.exe”.

OpenComRTOS-Suite 1.4.3.3 Manual

4.3 Building and Running a Heterogeneous System 47

(a) Configuration Tab (b) Program Tab

Figure 4.4: Luminary Micro Flash Programmer

(b) Execute the executable which represents the Win32 node of the system:
c:\OpenComRTOS-Suite-1.4.3.x\ArmExamples\Semaphore\Output\bin\-
win32_node.exe

Now the ARM-Node and the Win32-Node will synchronize their connection and then start to run the
example, until you terminate it.

OpenComRTOS-Suite 1.4.3.3 Manual

48 CONTENTS

OpenComRTOS-Suite 1.4.3.3 Manual

4.3 Building and Running a Heterogeneous System 49

(a) Device Driver Tab (b) Link Port Tab

Figure 4.5: Node Configuration of the ArmNode

4.3.2 Semaphore Loop using TCP-IP over Ethernet link Technology

This section details how to run the Semaphore Loop example, between an ARM-Node and a Win32-Node
using TCP-IP over Ethernet.

1. Open the project: ‘c:\OpenComRTOS-Suite-1.4.3.x\ArmExamples\Semaphore_TCPIP\-
Semaphore.ove’. This will open the topology diagram (Figure 4.2).This will open the topology
diagram. In the Topology check: Win32Node Compiler, ArmNode Compiler, as detailed in Section
4.3.1.

2. Adjust the topology to the concrete execution environment:
The TCP-IP configuration of both the ArmNode and the Win32Node need to be adjusted to comply
to the local settings. For this purpose use open the Link Port Editor used previously and adjust
the settings if necessary. Figures 4.5a – 4.5b show the default settings of the ArmNode and the
Win32Node.

3. Build the project:
Compile the example application using the menu-item ‘Build’ form the ‘Build’ menu. The build run
should end with: “Build successful”.

4. Execute the project:

(a) Connect ArmNode and Win32 using an ethernet cable.

(b) Download the program to the ArmNode.

(c) Execute the executable which represents the Win32Node of the system.

Now the ARM-Node and the Win32-Node will synchronize their connection and then start to run the
example, until you terminate it.

OpenComRTOS-Suite 1.4.3.3 Manual

50 CONTENTS

(a) Device Driver Tab (b) Link Port Tab

Figure 4.6: Node Configuration of the Win32Node

4.4 OpenComRTOS Tracing

Before reading this section, it is necessary to first understand how to work with OpenVE, please refer to its
manual for this before reading on.

This section first gives an introduction to tracing in Open ComRTOS. Section 4.4.2 explains how to enable
the tracing mode of OpenComRTOS, which collects runtime information within a Node. Section 4.4.3
explains the retrieval of these information from a Node and the storage in a File. Section 4.4.3.1 explains
the additional changes done to the Semaphore-Example to make it generate traces, and how to display the
retrieved tracefile using the OpenTracer application.

4.4.1 Tracing in OpenComRTOS

The OpenComRTOS kernel has a tracing mode, in which it collects the following events:

• Scheduling Events — which task ran at what time.

• Service Requests by Tasks — at what time did a task issue a specific service request. Naturally, the
nature of the service request is captured as well.

• Hub interactions — when did the kernel perform an interaction with a hub.

While running in the tracing mode OpenComRTOS continuously collects these events and stores them in
an internal buffer.

4.4.2 How to enable tracing

To enable the tracing mode you have to set node specific properties (node-properties). To set a node-
property, open the node-property pane by double clicking on a node in the topology-diagram, your OpenVE

OpenComRTOS-Suite 1.4.3.3 Manual

4.4 OpenComRTOS Tracing 51

Figure 4.7: OpenVE with open Property Pane

window should now look similar to Figure 4.7.

There are two node-properties relevant to tracing:

• debugopt must be set to 2 — debugopt defines the debug-mode a node runs in. The default
value of this property is ‘0’. To enable tracing “debugopt” must be set to ‘2’.

• traceBufferSize — traceBufferSize defines how many past events get recorded. It de-
faults to ‘1024’, its upper limit is defined by the amount of memory available on the Node.

The Node now collects trace-information in its trace-buffer, but these trace information are not yet available
to the OpenTracer application. For this, it first needs to be written to a file, i.e. the trace-buffer needs to be
dumped, only then, the OpenTracer application can interpret the trace. The following section explains how
to retrieve trace information from a Node to generate a trace-file.

4.4.3 How to retrieve a trace

An embedded Node has usually no file system available which could be used to store a trace. Instead,
OpenComRTOS Nodes can transfer the contents of the trace-buffer to a StdioHostServer which will then
write the retrieved trace information into a file for the OpenTracer application.

1. Add a StdioHostServer to the application diagram and place it on a Node of type Win32. The added
StdioHostServer will be referred to as ‘Shs’ in this example. A StdioHostServer is a task which
offers a range of stdio functionalities to embedded Nodes, such as the ARM Node. One of which is
to receive the contents of a trace-buffer and write it onto a disk.

2. Add the instruction DumpTraceBuffer(Shs) to one of the tasks. This is the actual instruction
which will transfer the contents of the trace-buffer to the StdioHostServer with the name ‘Shs’. The
retrieved trace information are then written to a file with the extension ‘trace1’ (in the following
this file will be referred to as trace1-file).

OpenComRTOS-Suite 1.4.3.3 Manual

52 CONTENTS

Figure 4.8: Tracing enabled Application Diagram

4.4.3.1 Extending the Semaphore-Example with Tracing

The project ‘SemaphoreTracing’ is a tracing enabled version of the previously shown Semaphore-Example.
In addition to the changes explained in Sections 4.4.2 and 4.4.3 the following has been changed:

1. All Tasks and Hubs of the Semaphore Loop get mapped onto the ARM-Node.

2. A StdioHostServer has been added to the Application, and mapped onto the Win32 node. Using the
StdioHostServer, the ARM node can write the contents of its trace buffer directly onto the disk of the
Win32Node. This is means there is no need for special hardware to retrieve trace information.

3. In one of the two tasks of the Semaphore-Loop add a for-loop which which lets the loop execute for
500 times.

4. Before writing out the trace-buffer a message is displayed on the StdioHostServer announcing that
the dumping of the trace takes place.

5. The task calls the function DumpTraceBuffer() to write the contents of the trace buffer into a
file;

6. After the dumping of the trace is completed another message is displayed which asks the user to press
enter to continue the execution. This is necessary because otherwise the system would continuously
overwrite the trace file it generated.

Depending on your application you may need to perform similar changes. Figure 4.8 shows the resulting
Application Diagram for the Semaphore Example.

To test it, follow the instructions given in Section 4.3. To display the retrieved trace open the trace-file
(extension ‘trace’) with OpenTracer, this should give you an output similar to the one shown in Figure 4.9.

4.5 Summary

This guide covered the installation process of the OpenComRTOS Suite ARM Evaluation Kit. It covered
the installation of the necessary software packages in Sections 4.2 and 4.1. This was followed in Section

OpenComRTOS-Suite 1.4.3.3 Manual

4.5 Summary 53

Figure 4.9: OpenTracer displaying the retrieved Trace

4.3 with an explanation on how to work with heterogeneous systems consisting of an ARM-Cortex-M3
Node and a Win32 Node. Finally, Section 4.4 explained how tracing works in OpenComRTOS, as well as
how to enable the tracing mode, retrieve a trace from the ARM evaluation kit and the necessary steps to
display it using OpenTracer.

OpenComRTOS-Suite 1.4.3.3 Manual

54 CONTENTS

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 5

Installing NXP-Coolflux

Introduction

OpenComRTOS is one of the few formally developed real time operating systems. This rigorous formalism
has two benefits. First of all: good performance. This good performance is reflected in the small code size
and the fast execution speed. This manual will help you to install and evaluate the OpenComRTOS Kernel
Image for NXP-CoolFlux for OpenComRTOS-Suite 1.4. After this, the manual explains how to build the
provided examples and gives details of the individual examples.

5.1 OpenComRTOS-Suite Installation Instructions

This section details how to setup the OpenComRTOS-Suite-1.4.3.x, which requires the MinGW toolchain,
and the CMake build system. These instructions assume that you already installed OpenComRTOS-Suite
1.4 for MS-Windows, as described in Section 3.1.5. Furthermore, it assumes that you have installed the
necessary toolchain to build software for the NXP-CoolFlux. OpenComRTOS for NXP-CoolFlux was
built using version: cf6-c1.2-08R1.1 of the Target compilers. If this is not the then please do so before
proceeding.

5.1.1 Installing the OpenComRTOS Kernel Image for NXP-CoolFlux

This image contains not only the binary distribution of OpenComRTOS for NXP-CoolFlux, but also a
number of examples for evaluation purposes. Section 5.2 explains how to build the examples and the
specialties of the NXP-CoolFlux port. The installation instructions given in Section 3.1.6, on page 39
apply.

5.2 Examples

This section first explains how to build one of the provided examples, before discussing each example in
detail. All examples are located in the folder Examples\coolflux’ below the OpenComRTOS-Suite
installation directory.

56 CONTENTS

Figure 5.1: Topology of the SemaphoreLoop_W example

Figure 5.2: Node Properties of a NXP-CoolFlux Node

5.2.1 Loading and building a NXP-CoolFlux Example with OpenVE

This section explains how to build the SemaphoreLoop_W example of the provided NXP-CoolFlux exam-
ples. To build this example follow these steps:

1. Start OpenVE:
In the Start Menu of MS-Windows select open the group ‘OpenComRTOS-Suite-1.4.3.x’ (x repre-
senting the patch-level of OpenVE). Inside this group click on the entry labelled ‘OpenVE’ to start
OpenVE.

2. Open the ‘SemaphoreLoop_W’ project in OpenVE:
In the menu-bar click on ‘File’ and then on ‘Open Project’ to open the ‘Open Project’ dialogue of
OpenVE. Now navigate to the folder ‘examples\coolflux\SemaphoreLoop_W\SemaphoreLoop_W.ove’’
below the OpenVE installation directory (usually c:\OpenComRTOS-Suite-1.4.3.x). There,
select the file ‘SemaphoreLoop_W.ove’ and click on the button labeled ‘open’ to open the
project. You should now see a topology consisting of a NXP-CoolFlux Node, similar to the one
shown in Figure 5.1. The topology diagram is a graphical representation of the project-topology.

3. Check the Node-Properties for the node labelled ‘CoolNode’: Open the ‘Node Configuration Dia-

OpenComRTOS-Suite 1.4.3.3 Manual

5.2 Examples 57

logue’, by opening the properties menu of the Node labeled ‘CoolNode’, using a right click, and
then selecting the menu entry ‘Node Configuration’, there select the tab labeled ‘Properties’, see
Figure 5.2. Every Node of type NXP-CoolFlux has the following properties, which might have to be
adjusted depending on the actual project:

• name — Specifies the name of the Node. This name is use when mapping entities to nodes,
and also while building there will be a directory in the Output directory with the same name,
where all the files specific to this Node get stored.

• KernelTask_StackSize — Stack size in words for the Kernel Task, the default value is
96 words.

• IdleTask_StackSize — Stack size in words for the Idle Task, the default value is 96
words.

• ISR_StackSize — Stack size in words for the ISR handling, the default value is 96 words.
This is currently unused, as the ISR at the moment does not use a separate stack.

• compilerEnvironment — This is an optional script that should be called before build-
ing, to setup the environment for the chosen toolchain. All NXP-CoolFlux examples call the
script located in the directory examples\coolflux. The script was generated during the
installation of the Target Toolchain. Please replace it with a script fitting your installation.

• compiler — Name of the compiler to use.

• compilerOptions — OpenComRTOS usually comes compiled with different compiler op-
timizations applied. For NXP-CoolFlux this not the case, there is only the option O0 available.

• debugopt — Specifies the tracing level. The current version of the NXP-CoolFlux port does
not support tracing at the moment. Thus leave it at its default value of 0.

• kernelPacketPoolSize — How many L1_Packets to provide in the Kernel Packet Pool.
This setting is only relevant to Multi-Node (MP) versions of OpenComRTOS, thus irrelevant
to the present NXP-CoolFlux port.

• rxPacketPoolSize— How many L1_Packets to provide in the Receiver Packet Pool. This
setting is only relevant to Multi-Node (MP) versions of OpenComRTOS, thus irrelevant to the
present NXP-CoolFlux port..

4. Take a look at the Application Diagram for the example (Figure 5.3). In the Application diagram the
developer specifies Tasks and Hubs and their interactions. All necessary code to reflect the changes
in the Application diagram gets automatically generated. The diagram updates itself whenever there
are changes to the source code. This ensures that both source code and diagram are consistent at all
times.

5. Build the project:
Compile the example application using the menu-item ‘Build’ form the ‘Build’ menu. The build

run should end with: “Build successful”. The resulting elf-file has been copied into the directory
Output\bin below the original project directory. It can directly be loaded into the NXP-CoolFlux
simulator.

Follow these instructions to build all examples detailed in the following subsections.

5.2.2 Example: SemaphoreLoop_W

This example represents a simple Semaphore loop, where two tasks signal each other using two semaphores,
without any interrupts being enabled. It is our standard test to determine the time it takes to perform a con-
text switch on the given target. One loop represents a total of eight context switches. Figure 5.3 shows the
application diagram of the example.

OpenComRTOS-Suite 1.4.3.3 Manual

58 CONTENTS

Figure 5.3: Application Diagram of the SemaphoreLoop_W example

5.2.2.1 Example setup and Measurement Results

• Example Configuration:

– Number of Tasks: 4

– Stack size of each Task: 96 words

• Memory consumption:

– PMEM: 1785 words

– XMEM: 786 words

– YMEM: 1 word

– XYMEM: 1 word

• Loop time: 3826 cycles

5.2.3 Example: PortLoop_W

This example represents a simple Port loop, where two tasks signal each other using two Ports, without
any interrupts bein enabled. The difference between a Port and a Semaphore-Loop is that with Port loop
it is also possible to move data from one Task to another Task. However, this test was performed without
moving any data between the Tasks. Figure 5.4 shows the application diagram of the example.

5.2.3.1 Example setup and Measurement Results

• Example Configuration:

– Number of Tasks: 4

– Stack size of each Task: 96 words

• Memory consumption:

– PMEM: 1759 words

– XMEM: 784 words

OpenComRTOS-Suite 1.4.3.3 Manual

5.2 Examples 59

Figure 5.4: Application Diagram of the PortLoop_W example

Figure 5.5: Application Diagram of the Semaphore_WT example

– YMEM: 1 word

– XYMEM: 1 word

• Loop time: 3871 cycles

5.2.4 Example: Semaphore_WT

This example demonstrates that the _WT services of the NXP-CoolFlux port are working. It does this by
having a Task waiting with a timeout of 10 ticks, for a Semaphore to become signaled. This invokes the
pTimer implementation to wait for 10 external interrupts on interrupt pin 1. Once the timeout has expired,
the Task gets rescheduled and then tries again to test the Semaphore. Figure 5.5 shows the application
diagram of the example.

To try out the ISR in the simulator this example provides two input files for the NXP-CoolFlux simulator,
which are located in the directory: simulator, below the project directory. The file irq-input.txt
contains the sequence in which interrupts will be generated, the file irq-timing.txt contains the
duration of the interrupts. For the interrupts to be generated by the simulator, it is necessary to instruct the

OpenComRTOS-Suite 1.4.3.3 Manual

60 CONTENTS

Figure 5.6: Application Diagram of the CodeSize_AllServices_pTimer example

simulator to read from the file at every cycle.

5.2.4.1 Example setup and Measurement Results

• Example Configuration:

– Number of Tasks: 3

– Stack size of each Task: 96 words

– pTimer ISR enabled

• Memory consumption:

– PMEM: 2001 words

– XMEM: 613 words

– YMEM: 1 word

– XYMEM: 1 word

5.2.5 Example: CodeSize_AllServices

The purpose of this example is to determine how much memory is necessary when enabling all services
available in OpenComRTOS. The example itself does not perform any useful operation, it is purely meant
for code-size estimation. This version of the example does not include the pTimer ISR. Figure 5.6 shows the
application diagram the the CodeSize_AllServices_pTimer, which is identical to the application diagram
of this example.

OpenComRTOS-Suite 1.4.3.3 Manual

5.2 Examples 61

5.2.5.1 Example setup and Measurement Results

• Example Configuration:

– Number of Tasks: 3

– Stack size of each Task: 96 words

• Memory consumption:

– PMEM: 2066 words

– XMEM: 721 words

– YMEM: 1 word

– XYMEM: 1 word

5.2.6 Example: CodeSize_AllServices_pTimer

The purpose of this example is to determine how much memory is necessary when enabling all services
available in OpenComRTOS. The example itself does not perform any useful operation, it is purely meant
for code-size estimation. This version of the example does include the pTimer ISR. Figure 5.6 shows the
application diagram of this example.

5.2.6.1 Example setup and Measurement Results

• Example Configuration:

– Number of Tasks: 3

– Stack size of each Task: 96 words

– pTimer ISR enabled

• Memory consumption:

– PMEM: 2301 words

– XMEM: 721 words

– YMEM: 1 word

– XYMEM: 1 word

5.2.7 Example: InterruptLatencyMeasurement

For a developer of real time systems it is very interesting to know how long it takes after an IRQ until the
ISR respectively the Task get executed. This example allows one to measure these two values within the
simulator. In this example a custom ISR gets inserted into the system which signals the Event Event1.
Task Task1 waits for this event to be signaled, and thus gets woken up once the ISR signaled the Event.
By placing breakpoints at the right places one can use the simulator to determine the interrupt latencies.
Figure 5.6 shows the application diagram the the InterruptLatencyMeasurement example.

OpenComRTOS-Suite 1.4.3.3 Manual

62 CONTENTS

Figure 5.7: Application Diagram of the InterruptLatencyMeasurement example

5.2.7.1 Building and running the Example

This example uses a custom ISR, which is not supported by OpenvE at the present moment of time. Due
the fact that NXP-CoolFlux is a Harvard architecture it is also not possible to hook the ISR dynamically
without paying a performance penalty. Therefore, this example is preprepared, to be easily built by hand.
For this purpose the example directory contains the file build.bat which will execute the necessary
steps to build the example. The result of the build process is an elf file in the directory Output\bin.

To try out the ISR in the simulator this example provides two input files for the NXP-CoolFlux simulator,
which are located in the directory: simulator, below the project directory. The file irq-input.txt
contains the sequence in which interrupts will be generated, the file irq-timing.txt contains the
duration of the interrupts. For the interrupts to be generated by the simulator, it is necessary to instruct the
simulator to read from the file at every cycle.

5.2.7.2 Example setup and Measurement Results

• Example Configuration:

– Number of Tasks: 3

– Stack size of each Task: 96 words

– One ISR.

• Memory consumption:

– PMEM: 1988 words

– XMEM: 660 words

– YMEM: 1 word

– XYMEM: 1 word

• Interrupt Latency Measurement results:

– cycle 1997 — IRQ got signaled.

– cycle 2003 — ISR breakpoint reached;

– cycle 2112 — First useful instruction can be executed, after the ISR has stored the context of
the interrupted task. This is the point in time that we define as IRQ to ISR latency.

– cycle 2902 — Task gets scheduled again, due to the Event having been signaled by the ISR.
This is the point in time we define as IRQ to ISR latency.

OpenComRTOS-Suite 1.4.3.3 Manual

5.3 Summary 63

• Resulting Latency:

1. IRQ to ISR latency — 115 cycles

2. IRQ to Task latency — 910 cycles

5.3 Summary

This document started by giving the installation instructions for OpenComRTOS-Suite 1.4 and its depen-
dencies. This was followed by instructions on how to install the NXP-CoolFlux evaluation Kernel-Image.
In the second part this document detailed how to build the supplied examples and shortly gave an introduc-
tion to each example, which included code-size and performance figures where applicable.

OpenComRTOS-Suite 1.4.3.3 Manual

64 CONTENTS

OpenComRTOS-Suite 1.4.3.3 Manual

Part III

Usage Tutorials

Chapter 6

Howto Use the Open System Inspector

Introduction

This tutorial explains the procedure to use the Open System Inspector to inspect the system state, during
runtime of the Semaphore_W_MP example. In this example two nodes: Win32Node1 and Win32Node2
execute a semaphore-loop distributed between them.

1. Start OpenVE

2. Open the project located at: examples\win32\Semaphores\Semaphore_W_MP.

3. Save the project as a new project called Semaphore_W_SVM. To do this follow these steps:

(a) Go to the main menu: File→ ‘Save Project As’. This opens the corresponding dialogue, shown
in Figure 6.1.

(b) In the text-field labelled ‘Name:’ insert the new name: ‘Semaphore_W_MP_OSI’.

(c) Press on the button labelled ‘Finish’. This will copy the current project at the new location;
close the current project; and open the newly created project.

4. To be able to connect with the OpenSI-GUI to the system an OSIRelayComponent has to be added
to the application diagram. This component acts as an interface between the OpenSI-GUI and the
OpenComRTOS environment, by relaying messages between the two worlds. When adding it to the
application diagram use the following properties:

Figure 6.1: The Save Project As Dialogue from OpenVE

68 Howto Use the Open System Inspector

Figure 6.2: Application Diagram with Open System Inspector componenents

• node: Win32Node1

• name: Relay

• portNumber: 4040 (default)

• RelayStackSize: 170 (default)

Please note, that the OSIRelayComponent is at the moment only available for the Win32-Port of
OpenComRTOS.

5. In oder to read out values from each Node it is necessary to add an OSIServerComponent on each
Node. The OSIServerComponent acts as an endpoint with which the OpenSI-GUI can communicate.
Please add the following OSIServerComponents to the system:

(a) OSIServerComponent for Win32Node1:

• node: Win32Node1
• name: Server1
• OSIStackSize: 512 (default)
• OSICeilingPriority: 32 (default)

(b) OSIServerComponent for Win32Node2

• node: Win32Node2
• name: Server2
• OSIStackSize: 512 (default)
• OSICeilingPriority: 32 (default)

After this step your application diagram should look similar to the one shown in Figure 6.2.

6. Now build the project using either the build button in the toolbar, or by using the main-menu: Build
→ Build.

OpenComRTOS-Suite 1.4.3.3 Manual

69

Figure 6.3: Open System Inspector Connected to the Project

7. Afer the build process completed successfully run the project, either by clicking on the run button in
the toolbar or using the main-menu: Build→ Run.

8. Start the OpenSI-GUI from the Start menu.

9. Open the project that has been created during this tutorial, by using the main-menu: File → Open
Project. The file to open is the OpenVE-Project file (extension ‘ove’).

10. Now the OpenSI-GUI must connect to the project, for this use the main-menu: Project→ Connect
to Project. Afterwards you should see a window similar to the one shown in Figure 6.3.

11. To acquire information about the current state of any entity simply open its properties menu. For tasks
there is also the possibility to suspend and resume their execution. These are dangrous operations,
because suspending kernel, driver or Open System Inspector tasks can render the system unable to
run. Keep in mind that the Open System Inspector is in practice nothing more than a normal user
task. Figure 6.4 shows the current state of the entity Task1, which is part of the Semaphore-Loop,
this information was acquired by using the properties menu entry: ‘Get information about Entity’.

OpenComRTOS-Suite 1.4.3.3 Manual

70 Howto Use the Open System Inspector

Figure 6.4: Open System Inspector Displaying the current state of Task1

OpenComRTOS-Suite 1.4.3.3 Manual

Part IV

OpenComRTOS

Chapter 7

Module Index

7.1 Modules

Here is a list of all modules:

The OpenComRTOS Hub Concept . 77
Port Hub . 77
Event Hub Operations . 83
Semaphore Hub Operations . 88
Resource Hub Operations . 93
FIFO Hub Operations . 97
Memory Pool Hub Operations . 103
Task Management Operations . 107
Base Variable types . 110
Types related to Timer Handling . 113

74 Module Index

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 8

File Index

8.1 File List

Here is a list of all files with brief descriptions:

include/L1_api_apidoc.h . 115
include/L1_types_apidoc.h . 117
src/kernel/L1_types.c . 121

76 File Index

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 9

Module Documentation

9.1 The OpenComRTOS Hub Concept

L1_Hub is a data structure representing a generic Hub.

The architecture defines the logical view of a Hub as one that has two waiting lists: the Get Request Waiting
List and the Put Request Waiting List. From the design point of view there is no need to operate with two
waiting lists for all L1 services. Port Hub, Event, Semaphore, Resource, FIFO, Memory Pool only have
one that is used in the implementation as at any given point in time, there can either be only Get request(s),
or only Put request(s) in the waiting lists or the waiting lists are empty.

Inserting or removing an element in the waiting list must be an atomic operation. This is guaranteed as
only the Kernel Task performs operations on a Hub.

The Synchronization Predicate determines whether a Put or Get request synchronizes according to the State
of the Hub and the content of the WaitingList(s). If synchronization can occur, the appropriate Synchro-
nization Action is called to perform the synchronization and to update the state. These two functions are
also called the Synchonisation Predicate of the Hub, and are dependent on the HubType.

The Synchronization Predicate is a function that takes as arguments:

• the Hub to retrieve the WaitingLists and the State

• the Packet, i.e. the L1 service request, that arrives in the Hub

The Synchronization Predicate returns:

• TRUE, if the newly arrived Packets can synchronize, The Synchronization Action is then called.

• FALSE otherwise. The Packet will then be inserted into the WaitingList.

When synchronization occurs, the Packet is returned to the Requesting Task. Note that upon an execution
of a Synchronization Action, the Synchronization Predicate may need to be re-evaluated as the (Packet in
the other) WaitingList could become enabled for synchronization.

9.2 Port Hub

Functions

• L1_Status L1_PutPacketToPort_W (L1_HubID port)

78 Module Documentation

• L1_Status L1_GetPacketFromPort_W (L1_HubID port)
• L1_Status L1_PutPacketToPort_WT (L1_HubID port, L1_Timeout timeout)
• L1_Status L1_GetPacketFromPort_WT (L1_HubID port, L1_Timeout timeout)
• L1_Status L1_PutPacketToPort_NW (L1_HubID port)
• L1_Status L1_GetPacketFromPort_NW (L1_HubID port)

9.2.1 Detailed Description

The Port Hub is uses to exchange data between two parts in a reliable way. It’s behaviour is similar to a
CSP-Channel.

9.2.2 Hub Description

The Port Hub, has the following properties, see also the section The OpenComRTOS Hub Concept :

• State: void

• Synchronisation Predicate upon L1_PutPacketToPort_{W,WT,NW}:

– Predicate: GetWaitingList is not Empty -Action: Exchange Data between Put Packet and first
waiting Get Packet, and return first waiting Get Packet or initiate the data transfer with the
parameters specified in the packet

• Synchronisation Predicate upon L1_GetPacketFromPort_{W,WT,NW}:

– Predicate: PutWaitingList is not Empty

– Action: Exchange Data between Get and first waiting Put Packet, and return first waiting Put
Packet or initiate the data transfer with the parameters specified in the packet

• Invariant(s): both waiting lists are empty, or only one waiting list contains waiting requests, i.e.

– length (put waiting list) <> 0 implies length (get waiting list) = 0

– length (get waiting list) <> 0 implies length (put waiting list) = 0

9.2.3 Example

The this exampple shows how to transfer data from one Task to another Task using a Port.

9.2.3.1 Entities

• Port1: Port which is used to exchange data between Task1 and Task2

• Task1: Task1EntryPoint, shown in section Source Code for Task1EntryPoint

• Task2: Task2EntryPoint, shown in section Source Code for Task2EntryPoint

• StdioHostServer1: Access to the console.

• StdioHostServer1Res: Ensuring that a second task does not interfere with console access.

OpenComRTOS-Suite 1.4.3.3 Manual

9.2 Port Hub 79

9.2.4 Source Code for Task1EntryPoint

#include <L1_api.h>
#include <L1_node_config.h>

void Task1EntryPoint(L1_TaskArguments Arguments)
{

L1_Packet *Packet = L1_CurrentTaskCR->RequestPacket;
L1_BYTE ch;
for (ch = ’a’; ch <= ’z’; ch++)
{

Packet->DataSize = sizeof(L1_BYTE);
Packet->Data[0] = ch;

if (RC_FAIL == L1_PutPacketToPort_W(Port1))
{

exit(-1);
}

}
}

9.2.5 Source Code for Task2EntryPoint

#include <L1_api.h>
#include <L1_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void Task2EntryPoint(L1_TaskArguments Arguments)
{

L1_Packet *Packet = L1_CurrentTaskCR->RequestPacket;

L1_BYTE ch, i;

for(i = 0; i < 26; i++)
{

if(RC_OK == L1_GetPacketFromPort_W(Port1))
{

Packet->DataSize = sizeof(L1_BYTE);
ch = Packet->Data[0];
L1_LockResource_W(StdioHostServer1Res);
Shs_putString_W(StdioHostServer1, "The following symbol was get from

Port1: ");
Shs_putChar_W(StdioHostServer1, ch);
Shs_putChar_W(StdioHostServer1, ’\n’);
L1_UnlockResource_W(StdioHostServer1Res);

}else
{

Shs_putString_W(StdioHostServer1, "Error: Could not acquire a symbol
from Port1, terminating. \n");

}
}

}

OpenComRTOS-Suite 1.4.3.3 Manual

80 Module Documentation

9.2.6 Function Documentation

9.2.6.1 L1_Status L1_GetPacketFromPort_NW (L1_HubID port)

Retrieves a packet from a port using the task’s Request-Packet. Returns immediately after the get request
was delivered to the specified Port, indicating either success (there was a corresponding put request at the
specified Port) or a failure (there was no put request at the specified Port; in that case the Get Packet is
NOT buffered in the specified Port).

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters
port L1_HubID which identifies the Port.

Note

If the specified Port is remote than the return time includes a communication delay.

Returns

• RC_OK service successful (there was a waiting Put request in the Port)

• RC_FAIL service failed (no corresponding put request in the Port)

Precondition

• Packet is the preallocated SystemPacket

Postcondition

• Header fields of Put Packet filled in the Task’s System Packet.

• Data of Put Packet will have been filled in.

9.2.6.2 L1_Status L1_GetPacketFromPort_W (L1_HubID port)

Retrieves a packet from a port using the task’s Request-Packet. This service waits until the get request has
synchronised with a corresponding put packet delivered to the specified Port.

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters
port L1_HubID which identifies the Port.

Returns

• RC_OK service successful (there was a waiting Put request in the Port)

• RC_FAIL service failed (no corresponding put request in the Port)

OpenComRTOS-Suite 1.4.3.3 Manual

9.2 Port Hub 81

Precondition

• Packet is the preallocated SystemPacket

Postcondition

• Header fields of Put Packet filled in the Task’s System Packet.

• Data of Put Packet will have been filled in.

9.2.6.3 L1_Status L1_GetPacketFromPort_WT (L1_HubID port, L1_Timeout timeout)

Retrieves a packet from a port using the task’s Request-Packet. Waits until either the get request has syn-
chronised with a corresponding put request delivered to the specified Port, or either the specified timeout
has expired. If the timeout has expired the return value indicates a failed request (there was no corre-
sponding request to get a Packet from the specified Port) and the get Packet is removed from the Specified
Port.

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters
port L1_HubID which identifies the Port.

timeout of type L1_Timeout, the number of system ticks the call should wait for synchronisation.

Returns

• RC_OK service successful (there was a waiting Put request in the Port)

• RC_FAIL service failed (no corresponding put request in the Port)

• RC_TO service timed out.

Precondition

• Packet is the preallocated SystemPacket

Postcondition

• Header fields of Put Packet filled in the Task’s System Packet.

• Data of Put Packet will have been filled in.

9.2.6.4 L1_Status L1_PutPacketToPort_NW (L1_HubID port)

This service puts the Request-Packet of the task calling it into a Port. The service returns immediately after
the Packet was delivered to the specified Port. Indicates either success (there was a corresponding request
to get a Packet from the destination Port) or failure (there was no corresponding request to get a Packet
from the specified Port; in that case the put Packet is NOT buffered in the specified Port).

Note

If the specified Port is remote than the return time includes a communication delay.

Parameters

OpenComRTOS-Suite 1.4.3.3 Manual

82 Module Documentation

port of type L1_HubID, which identifies the Port.

Returns

L1_Status:

• RC_OK service successful (there was a waiting Get request in the Port)

• RC_FAIL service failed (no corresponding Get request in the Port)

Precondition

• None

• Packet is the preallocated Packet

Postcondition

• The Header field of the RequestPacket are filled in.

• Header fields of preallocated Packet filled in

9.2.6.5 L1_Status L1_PutPacketToPort_W (L1_HubID port)

This service puts the Request-Packet of the task calling it into a Port. This service waits until the put request
has synchronised with a corresponding request to get a Packet from the specified Port.

Parameters
port of type L1_HubID, which identifies the Port.

Returns

L1_Status:

• RC_OK service successful (there was a waiting Get request in the Port)

• RC_FAIL service failed (no corresponding Get request in the Port)

Precondition

• None

• Packet is the preallocated Packet

Postcondition

• The Header field of the RequestPacket are filled in.

• Header fields of preallocated Packet filled in

9.2.6.6 L1_Status L1_PutPacketToPort_WT (L1_HubID port, L1_Timeout timeout)

This service puts the Request-Packet of the task calling it into a Port. Waits until either the put request
has synchronised with a corresponding request to get a Packet from the specified Port, or else the specified
timeout has expired. If the timeout has expired the return value indicates a failed request (there was no
corresponding request to get a Packet from the specified Port) and the put Packet is removed from the
specified Port.

OpenComRTOS-Suite 1.4.3.3 Manual

9.3 Event Hub Operations 83

Parameters
port of type L1_HubID, which identifies the Port.

timeout of type L1_Timeout, the number of system ticks the call should wait for synchronisation.

Returns

L1_Status:

• RC_OK service successful (there was a waiting Get request in the Port)

• RC_FAIL service failed (no corresponding Get request in the Port)

• RC_TO service timed out.

Precondition

• None

• Packet is the preallocated Packet

Postcondition

• The Header field of the RequestPacket are filled in.

• Header fields of preallocated Packet filled in

9.3 Event Hub Operations

Functions

• L1_Status L1_RaiseEvent_W (L1_HubID event)
• L1_Status L1_TestEvent_W (L1_HubID event)
• L1_Status L1_RaiseEvent_WT (L1_HubID event, L1_Timeout timeout)
• L1_Status L1_TestEvent_WT (L1_HubID event, L1_Timeout timeout)
• L1_Status L1_RaiseEvent_NW (L1_HubID event)
• L1_Status L1_TestEvent_NW (L1_HubID event)

9.3.1 Detailed Description

The Event Hub, has the following properties, see also the section The OpenComRTOS Hub Concept :

L1_Event is a data structure representing a logical Event, which is a specific instantiation of an L1_Hub.

• State:

– L1_BOOL: isSet (True or False)

• Synchronisation Action upon L1_RaiseEvent_{W,WT,NW}:

– Predicate: isSet == False

– Action: isSet := True, Packet := PutPacket inserted in waiting list

• Synchronisation Action upon L1_TestEvent_{W,WT,NW}:

– Predicate: isSet == True

– Action: isSet := False, GetPacket := Packet removed from waiting list

OpenComRTOS-Suite 1.4.3.3 Manual

84 Module Documentation

• Invariant(s):

– both waiting lists are empty, or only one waiting list contains waiting requests, i.e.

* length (put waiting list) <> 0 implies length (Get waiting list) = 0

* length (get waiting list) <> 0 implies length (Put waiting list) = 0

• content of waiting lists are dependent on the current state, i.e.

– isSet = True implies length (Get waiting list) = 0

– isSet = False implies length (Put waiting list) = 0

• Notes: One example of a user defined Event could be to copy the data from the PutPacket. In this
case the data must be copied into the Hub when the Event is raised. Note also that the Boolean
condition can be any well formed logical expression that evaluates to true or false.

9.3.2 Example

This example illustrates the use of the Event Hub. Task1 periodically raises the Event Event1 on which the
Task2 is waiting. When the Event is raised the waiting Task2 will receive a RC_OK return value.

The program uses the L1_TestEvent_W and L1_RaiseEvent_W waiting kernel services.

9.3.2.1 Entities

• Task1: Task1EntryPoint, shown in section Source Code of Task1EntryPoint

• Task2: Task2EntryPoint, shown in section Source Code of Task2EntryPoint

• Event1: The Event Hub used to synchronise between Task1 and Task2.

• StdioHostServer1: Stdio Host Server used to print messages onto the screen.

• StdioHostServer1Res: Resource Lock used to prevent disruptions while printing messages onto the
console using StdioHostServer1.

9.3.3 Source Code of Task1EntryPoint

#include <L1_api.h>
#include <L1_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void Task1EntryPoint(L1_TaskArguments Arguments)
{

L1_INT32 EventCounter = 0;
while(1)
{

// Here Event1 gets raised.
if(RC_OK == L1_RaiseEvent_W(Event1))
{

L1_LockResource_W(StdioHostServer1Res);
Shs_putString_W(StdioHostServer1, "Task1 raised the Event1 N \n");
Shs_putInt_W(StdioHostServer1, EventCounter++, ’d’);

OpenComRTOS-Suite 1.4.3.3 Manual

9.3 Event Hub Operations 85

Shs_putChar_W(StdioHostServer1, ’\n’);
L1_UnlockResource_W(StdioHostServer1Res);

}
}

}

9.3.4 Source Code of Task2EntryPoint

#include <L1_api.h>
#include <L1_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void Task2EntryPoint(L1_TaskArguments Arguments)
{

L1_INT32 EventCounter = 0;

while(1)
{

// Here Event1 gets tested.
if(RC_OK == L1_TestEvent_W(Event1))
{

L1_LockResource_W(StdioHostServer1Res);
Shs_putString_W(StdioHostServer1, "Task2 tested Event1 N ");
Shs_putInt_W(StdioHostServer1, EventCounter++, ’d’);
Shs_putString_W(StdioHostServer1, " - synchronization is done\n");
L1_UnlockResource_W(StdioHostServer1Res);

}
}

}

9.3.5 Function Documentation

9.3.5.1 L1_Status L1_RaiseEvent_NW (L1_HubID event)

This service raises an Event from False to True. This service returns immediately independent of whether
or not it could raise the event.

Parameters:

Parameters
event is of type L1_HubID, identifies the Event, i.e. Hub, that the calling Task wants to raise.

Returns

L1_Status:

• RC_OK service successful (the Event has been raised)

• RC_FAIL service failed (the Event has not been raised)

Precondition

• Packet is the preallocated Packet

• Hub is of Event type

OpenComRTOS-Suite 1.4.3.3 Manual

86 Module Documentation

Postcondition

• Header fields of preallocated Packet filled in

9.3.5.2 L1_Status L1_RaiseEvent_W (L1_HubID event)

This service raises an Event from False to True. If the Event is already set, wait.

Parameters:

Parameters
event is of type L1_HubID, identifies the Event, i.e. Hub, that the calling Task wants to raise.

Returns

L1_Status:

• RC_OK service successful (the Event has been raised)

• RC_FAIL service failed (the Event has not been raised)

Precondition

• Packet is the preallocated Packet

• Hub is of Event type

Postcondition

• Header fields of preallocated Packet filled in

9.3.5.3 L1_Status L1_RaiseEvent_WT (L1_HubID event, L1_Timeout timeout)

This service raises an Event from False to True. This call waits until either the event could be raised or the
timeout expired.

Parameters:

Parameters
event of type L1_HubID, identifies the Event, i.e. Hub, that the calling Task wants to raise.

timeout of type L1_Timeout, the number of system ticks the call should wait for synchronisation.

Returns

L1_Status:
• RC_OK service successful (the Event has been raised)
• RC_FAIL service failed (the Event has not been raised)
• RC_TO service timed out.

Precondition

• Packet is the preallocated Packet
• Hub is of Event type

Postcondition

• Header fields of preallocated Packet filled in

OpenComRTOS-Suite 1.4.3.3 Manual

9.3 Event Hub Operations 87

9.3.5.4 L1_Status L1_TestEvent_NW (L1_HubID event)

This service tests an Event. Returns immediately.

Parameters
event is of type L1_HubID and identifies the Event, that the calling Task wants to test.

Returns

L1_Status, the following return values are possible:

• RC_OK service successful (there was a set Event)

• RC_FAIL service failed (there was no set Event)

Precondition

• Packet is the preallocated Packet

Postcondition

• Header fields of preallocated Packet filled in

9.3.5.5 L1_Status L1_TestEvent_W (L1_HubID event)

This service tests an Event. This call waits until the Event has been signalled.

Parameters
event is of type L1_HubID and identifies the Event, that the calling Task wants to test.

Returns

L1_Status, the following return values are possible:

• RC_OK service successful (there was a set Event)

• RC_FAIL service failed (there was no set Event)

Precondition

• Packet is the preallocated Packet

Postcondition

• Header fields of preallocated Packet filled in

9.3.5.6 L1_Status L1_TestEvent_WT (L1_HubID event, L1_Timeout timeout)

This service tests an Event. This call waits until either the Event has been signalled, or the timeout expired.

Parameters
event is of type L1_HubID and identifies the Event, that the calling Task wants to test.

timeout of type L1_Timeout, the number of system ticks the call should wait for synchronisation.

OpenComRTOS-Suite 1.4.3.3 Manual

88 Module Documentation

Returns

L1_Status, the following return values are possible:
• RC_OK service successful (there was a set Event).
• RC_FAIL service failed (there was no set Event).
• RC_TO timeout expired.

Precondition

• Packet is the preallocated Packet

Postcondition

• Header fields of preallocated Packet filled in

9.4 Semaphore Hub Operations

Functions

• L1_Status L1_SignalSemaphore_W (L1_HubID semaphore)
• L1_Status L1_TestSemaphore_W (L1_HubID semaphore)
• L1_Status L1_SignalSemaphore_WT (L1_HubID semaphore, L1_Timeout timeout)
• L1_Status L1_TestSemaphore_WT (L1_HubID semaphore, L1_Timeout timeout)
• L1_Status L1_SignalSemaphore_NW (L1_HubID semaphore)
• L1_Status L1_TestSemaphore_NW (L1_HubID semaphore)

9.4.1 Detailed Description

L1_Semaphore is a data structure representing a Semaphore, which is a specific instantiation of a L1_Hub.
The Semaphore Hub, has the following properties, see also the section The OpenComRTOS Hub Concept
:

• State:

– L1_UINT16 Count

• Synchronisation Predicate upon L1_SignalSemaphore_{W,WT,NW}:

– Predicate: True, i.e. always succeeds (assuming Count < MaxInt).
– Action: Count := Count + 1

• Synchronisation Predicate upon L1_TestSemaphore_{W,WT,NW}:

– Predicate: Count > 0
– Action: Count := Count -1
– Note: when a predicate holds, the other predicate also has to be (re)evaluated. This evaluation

and synchronization can be combined in the implementation.

• Invariant(s):

– Put waiting list is empty.
– count <> 0 implies length (Get waiting list) = 0

• Notes: Because the Predicate always holds when signaling a semaphore, no data can be transferred
via the PutPacket.

OpenComRTOS-Suite 1.4.3.3 Manual

9.4 Semaphore Hub Operations 89

9.4.2 Example

This example demonstrates the Tasks synchronization mechanism via the Semaphore Hub, by implement-
ing a so called Semaphore-loop. In the Semaphore-loop Task1 signals Seamaphore Sema1, while Task2
waits for Sema1 to be signalled. Upon being signalled Task2 signals Sema2 for which Task1 waits to
become signalled. Then the whole thing repeats.

9.4.2.1 Entities

• Task1: Task1EntryPoint, shown in section Source Code of Task1EntryPoint

• Task1: Task2EntryPoint, shown in section Source Code of Task2EntryPoint

• Sema1: Semaphore Hub

• Sema2: Semaphore Hub

• StdioHostServer1: Stdio Host Server used to print messages onto the screen.

9.4.3 Source Code of Task1EntryPoint

#include <L1_api.h>
#include "L1_node_config.h"
#include <StdioHostService/StdioHostClient.h>

void Task1EntryPoint(L1_TaskArguments Arguments)
{

while(1)
{

Shs_putString_W(StdioHostServer1, "Task 1 signals Sema 1\n");
if(RC_OK != L1_SignalSemaphore_W(Sema1))
{

Shs_putString_W(StdioHostServer1, "Not Ok\n");
}

Shs_putString_W(StdioHostServer1, "Task 1 tests Sema 2\n");
if(RC_OK != L1_TestSemaphore_W(Sema2))
{

Shs_putString_W(StdioHostServer1, "Not Ok\n");
}

}
}

9.4.4 Source Code of Task2EntryPoint

#include <L1_api.h>
#include <L1_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void Task2EntryPoint(L1_TaskArguments Arguments)
{

while(1)
{

OpenComRTOS-Suite 1.4.3.3 Manual

90 Module Documentation

Shs_putString_W(StdioHostServer1, "Task 2 tests Sema 1\n");
if(RC_OK != L1_TestSemaphore_W(Sema1))
{

Shs_putString_W(StdioHostServer1, "Not Ok\n");
}
Shs_putString_W(StdioHostServer1, "Task 2 signals Sema 2\n");
if(RC_OK != L1_SignalSemaphore_W(Sema2))
{

Shs_putString_W(StdioHostServer1, "Not Ok\n");
}

}
}

9.4.5 Function Documentation

9.4.5.1 L1_Status L1_SignalSemaphore_NW (L1_HubID semaphore)

Signals a semaphore, i.e. increases the semaphore count. This call returns immediately.

Parameters:

Parameters
semaphore is the L1_HubID which identifies the Semaphore, that the calling Task wants to signal

Returns

L1_Status:

• RC_OK service successful (the semaphore count was incremented)

• RC_FAIL service failed (the semaphore count was not incremented)

Precondition

• None

Postcondition

• Semaphore count incremented

• Calling tasks ready

9.4.5.2 L1_Status L1_SignalSemaphore_W (L1_HubID semaphore)

Signals a semaphore, i.e. increases the semaphore count. This call waits until it could increment the
Semaphore count.

Parameters:

Parameters
semaphore the L1_HubID which identifies the Semaphore, that the calling Task wants to signal

Returns

L1_Status:

• RC_OK service successful (the semaphore count was incremented)

OpenComRTOS-Suite 1.4.3.3 Manual

9.4 Semaphore Hub Operations 91

• RC_FAIL service failed (the semaphore count was not incremented)

Precondition

• None

Postcondition

• Semaphore count incremented

• Calling tasks ready

9.4.5.3 L1_Status L1_SignalSemaphore_WT (L1_HubID semaphore, L1_Timeout timeout)

Signals a semaphore, i.e. increases the semaphore count. This service waits until it either could increment
the semaphore count or the timout expired.

Parameters:

Parameters
semaphore is the L1_HubID which identifies the Semaphore, that the calling Task wants to signal

timeout the number of system ticks the call should wait for synchronisation.

Returns

L1_Status:

• RC_OK service successful (the semaphore count was incremented)

• RC_FAIL service failed (the semaphore count was not incremented)

• RC_TO service timed out.

Precondition

• None

Postcondition

• Semaphore count incremented

• Calling tasks ready

9.4.5.4 L1_Status L1_TestSemaphore_NW (L1_HubID semaphore)

Tests whether or not a Semaphore is ready, i.e. the semaphore count is larger than zero. This service returns
immediately, even if it could not decrement the semaphore counter.

Parameters
semaphore identifies the Semaphore, that the calling Task wants to test.

Returns

L1_Status

• RC_OK The service call was successful (the semaphore count was >1 and decremented)

• RC_FAIL The service call failed.

OpenComRTOS-Suite 1.4.3.3 Manual

92 Module Documentation

Precondition

• None

Postcondition

• Semaphore count is 0 or decremented by one.

• Calling tasks ready

9.4.5.5 L1_Status L1_TestSemaphore_W (L1_HubID semaphore)

Tests whether or not a Semaphore is ready, i.e. the semaphore count is larger than zero. This service waits
until it could decrement the semaphore count.

Parameters
semaphore identifies the Semaphore-Hub, that the calling Task wants to test.

Returns

L1_Status

• RC_OK The service call was successful (the semaphore count was >1 and decremented)

• RC_FAIL The service call failed.

Precondition

• None

Postcondition

• Semaphore count is 0 or decremented by one.

• Calling tasks ready

9.4.5.6 L1_Status L1_TestSemaphore_WT (L1_HubID semaphore, L1_Timeout timeout)

Tests whether or not a Semaphore is ready, i.e. the semaphore count is larger than zero. This service waits
until it either could decrement the semaphore or the timeout expired.

Parameters
semaphore is of type L1_HubID and identifies the Semaphore, that the calling Task wants to test.

timeout the number of system ticks the call should wait for synchronisation.

Returns

L1_Status, the following return values are possible:

• RC_OK service successful (there was a set Event)

• RC_FAIL service failed (there was no set Event)

• RC_TO service timed out.

Precondition

• None

OpenComRTOS-Suite 1.4.3.3 Manual

9.5 Resource Hub Operations 93

Postcondition

• Semaphore count is 0 or decremented by one.

• Calling tasks ready

9.5 Resource Hub Operations

Functions

• L1_Status L1_LockResource_W (L1_HubID resource)
• L1_Status L1_UnlockResource_W (L1_HubID resource)
• L1_Status L1_LockResource_WT (L1_HubID resource, L1_Timeout timeout)
• L1_Status L1_UnlockResource_WT (L1_HubID resource, L1_Timeout timeout)
• L1_Status L1_LockResource_NW (L1_HubID resource)
• L1_Status L1_UnlockResource_NW (L1_HubID resource)

9.5.1 Detailed Description

The Semaphore Hub, has the following properties, see also the section The OpenComRTOS Hub Concept.
L1_Resource is a data structure representing a logical Resource, which is a specific instantiation of a L1_-
Hub.

• State:

– L1_Bool: Locked

– L1_TaskID: OwningTask

– L1_Priority: CeilingPriority

• Synchronisation Predicate upon L1_LockResource_{W,WT,NW}:

– Precondition: Current Task != OwningTask

– Predicate: not Locked:

* Action: (Locked := TRUE), OwningTask := Packet->RequestingTaskID

– Predicate: Locked:

* Action: (Locked := TRUE), insert Request Packet in waiting list, apply priority inheritance
if priority (OwningTask) > priority (Requesting Task)

• Synchronisation Predicate upon L1_UnlockResource_{W,WT,NW}

– Precondition: Packet->RequestingTaskID == OwningTask

– Predicate: Locked AND OwningTask == Packet->RequestingTaskID

– Action: Locked := FALSE, OwningTask := None, apply LockResource Action on next waiting
Task in waiting list.

• Invariant(s):

– Locked = False implies length (get waiting list) = 0

• Notes:

OpenComRTOS-Suite 1.4.3.3 Manual

94 Module Documentation

– Locked attribute may be redundant in the implementation.

– It is an application design error if the Synchronization Predicate is not valid for the get waiting
list (A task should only Unlock when it has Locked the resource)

– A task must not request to lock a resource it already has locked.

– When a predicate holds, the other predicate also has to be (re)evaluated. This evaluation and
synchronization can be combined in the implementation.

9.5.2 Example

This examples illustrates how a Resource Hub can be used to guard access to a shared resource, in this case
a Stdio Host Server. It consists of two tasks: Task1 and Task2, which both count from 0 to 19 and print out
the counting messages onto the console using the Stdio Host Server StdioHostServer1.

9.5.2.1 Entities

• Task1: Task1EntryPoint, shown in section Source Code of Task1EntryPoint

• Task1: Task2EntryPoint, shown in section Source Code of Task2EntryPoint

• StdioHostServer1: A Stdio Host Server component which provides acess to the console.

• StdioHostServer1Res: A Resource Hub to ensure that a second task does not interfere with console
access.

9.5.3 Source Code of Task1EntryPoint

#include <L1_api.h>
#include <L1_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void Task1EntryPoint(L1_TaskArguments Arguments)
{

L1_UINT32 i = 0;
for(i = 0; i < 20; i++)
{

L1_LockResource_W(StdioHostServer1Res);
Shs_putString_W(StdioHostServer1, "Task 1 outputs: 0x");
Shs_putInt_W(StdioHostServer1, i, ’x’);
Shs_putChar_W(StdioHostServer1, ’\n’);
L1_UnlockResource_W(StdioHostServer1Res);

}
}

9.5.4 Source Code of Task2EntryPoint

#include <L1_api.h>
#include <L1_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void Task2EntryPoint(L1_TaskArguments Arguments)

OpenComRTOS-Suite 1.4.3.3 Manual

9.5 Resource Hub Operations 95

{
L1_UINT32 i = 0;

for(i = 0; i < 20; i++)
{

L1_LockResource_W(StdioHostServer1Res);
Shs_putString_W(StdioHostServer1, "Task 2 outputs: 0x");
Shs_putInt_W(StdioHostServer1, i, ’x’);
Shs_putChar_W(StdioHostServer1, ’\n’);
L1_UnlockResource_W(StdioHostServer1Res);

}
}

9.5.5 Function Documentation

9.5.5.1 L1_Status L1_LockResource_NW (L1_HubID resource)

Locks a logical Resource. This service does return immediately, even if it could not lock the resource.

Parameters
resource identifies the Resource-Hub, that the calling Task wants to lock.

Returns

L1_Status RC_OK service successful (the resource was acquired and locked) RC_FAIL service failed
(the resource was not acquired)

Precondition

• None

Postcondition

• Calling task ready

9.5.5.2 L1_Status L1_LockResource_W (L1_HubID resource)

Locks a logical Resource. This service waits until it could lock the logical Resource.

Parameters
resource identifies the Resource-Hub, that the calling Task wants to lock.

Returns

L1_Status RC_OK service successful (the resource was acquired and locked) RC_FAIL service failed
(the resource was not acquired)

Precondition

• None

Postcondition

• Calling task ready

OpenComRTOS-Suite 1.4.3.3 Manual

96 Module Documentation

9.5.5.3 L1_Status L1_LockResource_WT (L1_HubID resource, L1_Timeout timeout)

Locks a logical Resource. This service waits until it either could lock the resource or the timeout expired.

Parameters
resource identifies the Resource-Hub, that the calling Task wants to lock
timeout the number of system ticks the call should wait for synchronisation.

Returns

L1_Status

• RC_OK service successful (the resource was acquired and locked)

• RC_FAIL service failed (the resource was not acquired)

• RC_TO service timed out.

Precondition

• None

Postcondition

• Calling task ready

9.5.5.4 L1_Status L1_UnlockResource_NW (L1_HubID resource)

Unlocks a logical Resource. This service returns immediately, independent whether or not it could decre-
ment the semaphore count.

Parameters
resource identifies the Resource-Hub, that the calling Task wants to unlock.

Returns

L1_Status

• RC_OK service successful (the resource was released)

• RC_FAIL service failed (the resource could not be unlocked)

Precondition

• None

Postcondition

• Calling task ready

9.5.5.5 L1_Status L1_UnlockResource_W (L1_HubID resource)

Unlocks a logical Resource. This service waits until is could unlock the resource!

Parameters
resource identifies the Resource-Hub, that the calling Task wants to unlock

OpenComRTOS-Suite 1.4.3.3 Manual

9.6 FIFO Hub Operations 97

Returns

L1_Status

• RC_OK service successful (the resource was released)

• RC_FAIL service failed (the resource could not be unlocked)

Precondition

• None

Postcondition

• Calling task ready

9.5.5.6 L1_Status L1_UnlockResource_WT (L1_HubID resource, L1_Timeout timeout)

Unlocks a logical Resource. This service waits until is could either unlock the resource, or the timeout
expired.

Parameters
resource identifies the Resource-Hub, that the calling Task wants to unlock
timeout the number of system ticks the call should wait while trying to enqueue the packet.

Returns

L1_Status

• RC_OK service successful (the resource was released)

• RC_FAIL service failed (the resource could not be unlocked)

• RC_TO the timeout expired.

Precondition

• None

Postcondition

• Calling task ready

9.6 FIFO Hub Operations

Functions

• L1_Status L1_EnqueueFifo_W (L1_HubID fifo)
• L1_Status L1_DequeueFifo_W (L1_HubID fifo)
• L1_Status L1_EnqueueFifo_WT (L1_HubID fifo, L1_Timeout timeout)
• L1_Status L1_DequeueFifo_WT (L1_HubID fifo, L1_Timeout timeout)
• L1_Status L1_EnqueueFifo_NW (L1_HubID fifo)
• L1_Status L1_DequeueFifo_NW (L1_HubID fifo)

OpenComRTOS-Suite 1.4.3.3 Manual

98 Module Documentation

9.6.1 Detailed Description

The Resource Hub, has the following properties, see also the section The OpenComRTOS Hub Concept.
L1_FIFO is a data structure representing a L1_FIFO buffer, which is a specific instantiation of a L1_Hub.

• State:

– const L1_UINT16: Size // number of fixed size data blocks in FIFO

– L1_UINT16: Count

– L1_List: Buffer

• Synchronisation Predicate upon L1_EnqueueFIFO:

– Predicate: Count < Size

– Action: Count := Count + 1, retrieve Data from Packet, and insert Data at end of List/Buffer

• Synchronisation Predicate upon L1_DequeueFIFO:

– Predicate: ount <> 0

– Action: Count := Count – 1, retrieve Data from (first element) of List/Buffer and exchange with
Packet, rerun L1_EnqueueFIFO I any waiting Task in the Put Waiting List

• Invariant(s):

– both waiting lists are empty, or only one waiting list contains waiting requests, i.e.

* length (put waiting list) <> 0 implies length (get waiting list) = 0

* length (get waiting list) <> 0 implies length (put waiting list) = 0

– content of waiting lists are dependent on the current state, i.e.

* Count <> 0 implies length (get waiting list) = 0

* length (Put waiting list) <> 0 implies Count == Size

* Count <> Size implies length (put waiting list) = 0

9.6.2 Example

This example illustrates the use of the FIFO Hub. Task1 puts a character into a packet and sends this to
FIFO1. Task2 initially waits for 2 seconds for the FIFO to fill up and then retrieves the packets from FIFO1
and displays their content.

9.6.2.1 Entities

• FIFO1: The FIFO bugger between Task1 and Task2, it can store 5 elements.

• Task1: Task1EntryPoint, shown in section Source Code of Task1EntryPoint

• Task1: Task2EntryPoint, shown in section Source Code of Task2EntryPoint

• StdioHostServer1: A Stdio Host Server component which provides acess to the console.

• StdioHostServer1Res: A Resource Hub to ensure that a second task does not interfere with console
access.

OpenComRTOS-Suite 1.4.3.3 Manual

9.6 FIFO Hub Operations 99

9.6.3 Source Code of Task1EntryPoint

void Task1EntryPoint(L1_TaskArguments Arguments)
{

L1_BYTE ch;
L1_Packet *Packet = L1_CurrentTaskCR->RequestPacket;

for(L1_UINT32 i=0; i<5; i++)
{

for(ch = ’a’; ch < ’j’; ch++)
{

Packet->DataSize = sizeof(L1_BYTE);
Packet->Data[0] = ch;

if(RC_OK == L1_EnqueueFifo_W(FIFO1))
{

L1_LockResource_W(StdioHostServer1Res);
Shs_putString_W(StdioHostServer1,

"The Task1 put into the FIFO1 the symbol ");
Shs_putChar_W(StdioHostServer1, ch);
Shs_putChar_W(StdioHostServer1, ’\n’);
L1_UnlockResource_W(StdioHostServer1Res);

}else
{

Shs_putString_W(StdioHostServer1,
"A symbol is not put by Task1 into FIFO1\n");

}
}

}
}

9.6.4 Source Code of Task2EntryPoint

#include <L1_api.h>
#include "L1_node_config.h"
#include <StdioHostService/StdioHostClient.h>

void Task2EntryPoint(L1_TaskArguments Arguments)
{

L1_Packet *Packet = L1_CurrentTaskCR->RequestPacket;
L1_BYTE i, ch;

while(1)
{

L1_LockResource_W(StdioHostServer1Res);
Shs_putString_W(StdioHostServer1, "Task2 sleeps for 2 s waiting for the F

IFO to fill up\n\n");
L1_UnlockResource_W(StdioHostServer1Res);
L1_WaitTask_WT(2000);

for(i = ’a’; i < ’j’; i++)
{

if(RC_OK == L1_DequeueFifo_W(FIFO1))

OpenComRTOS-Suite 1.4.3.3 Manual

100 Module Documentation

{
ch = Packet->Data[0];
L1_LockResource_W(StdioHostServer1Res);
Shs_putString_W(StdioHostServer1,

"The Task2 read from the FIFO1 the symbol ");
Shs_putChar_W(StdioHostServer1, ch);
Shs_putChar_W(StdioHostServer1, ’\n’);
L1_UnlockResource_W(StdioHostServer1Res);

}else
{

L1_LockResource_W(StdioHostServer1Res);
Shs_putString_W(StdioHostServer1,

"A symbol is not read by Task2 from FIFO1\n");
L1_UnlockResource_W(StdioHostServer1Res);

}
}

}
}

9.6.5 Function Documentation

9.6.5.1 L1_Status L1_DequeueFifo_NW (L1_HubID fifo)

Retrieves data from a FIFO, the data is stored in the payload of the task’s Request-Packet.

This call returns immediately, even if there is no packet available in the FIFO.

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters
fifo the L1_HubID which identifies the FIFO-Hub.

Returns

L1_Status

• RC_OK service successful (the data was inserted in the FIFO)

• RC_FAIL service failed (the data was not inserted in the FIFO)

Precondition

• None

Postcondition

• Calling task ready

9.6.5.2 L1_Status L1_DequeueFifo_W (L1_HubID fifo)

Retrieves data from a FIFO, the data is stored in the payload of the task’s Request-Packet. This call waits
until there is data in the FIFO to be retrieved.

OpenComRTOS-Suite 1.4.3.3 Manual

9.6 FIFO Hub Operations 101

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters
fifo the L1_HubID which identifies the FIFO-Hub.

Returns

L1_Status

• RC_OK service successful (the data was inserted in the FIFO)

• RC_FAIL service failed (the data was not inserted in the FIFO)

Precondition

• None

Postcondition

• Calling task ready

9.6.5.3 L1_Status L1_DequeueFifo_WT (L1_HubID fifo, L1_Timeout timeout)

Retrieves data from a FIFO, the data is stored in the payload of the task’s Request-Packet. Waits until either
data becomes available or the timeout expired, depending on what happens first.

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters
fifo the L1_HubID which identifies the FIFO-Hub to use.

timeout the number of system ticks the call should wait for a packet to become available.

Returns

L1_Status

• RC_OK service successful (the data was inserted in the FIFO)

• RC_FAIL service failed (the data was not inserted in the FIFO)

• RC_TO the timeout expired without a package being available.

Precondition

• None

Postcondition

• Calling task ready

OpenComRTOS-Suite 1.4.3.3 Manual

102 Module Documentation

9.6.5.4 L1_Status L1_EnqueueFifo_NW (L1_HubID fifo)

Inserts the payload-data of a task’s Request-Packet into a FIFO. This call returns immediately, even if the
packet could not be enqueued in the FIFO.

Parameters
fifo the L1_HubID which identifies the FIFO-Hub.

Returns

L1_Status

• RC_OK service successful (the data was inserted in the FIFO)

• RC_FAIL service failed (the data was not inserted in the FIFO)

Precondition

• None

Postcondition

• Calling task ready

9.6.5.5 L1_Status L1_EnqueueFifo_W (L1_HubID fifo)

Inserts the payload-data of a task’s Request-Packet into a FIFO. This service waits until it could insert the
data into the specified FIFO.

Parameters
fifo identifies the FIFO-Hub to use.

Returns

L1_Status

• RC_OK service successful (the data was inserted in the FIFO)

• RC_FAIL service failed (the data was not inserted in the FIFO)

Precondition

• None

Postcondition

• Calling task ready

9.6.5.6 L1_Status L1_EnqueueFifo_WT (L1_HubID fifo, L1_Timeout timeout)

Inserts the payload-data of a task’s Request-Packet into a FIFO. This service tries to enqueue a packet into
the FIFO until the the timeout expires.

Parameters
fifo identifies the FIFO-Hub to use.

timeout the number of system ticks the call should wait while trying to enqueue the packet.
OpenComRTOS-Suite 1.4.3.3 Manual

9.7 Memory Pool Hub Operations 103

Returns

L1_Status

• RC_OK service successful (the data was inserted in the FIFO)

• RC_FAIL service failed (the data was not inserted in the FIFO)

• RC_TO the timeout expired.

Precondition

• None

Postcondition

• Calling task ready

9.7 Memory Pool Hub Operations

Functions

• L1_Status L1_AllocateMemoryBlock_W (L1_HubID memoryPool, L1_BYTE ∗∗memoryBlock, L1_-
UINT16 size)

• L1_Status L1_DeallocateMemoryBlock_W (L1_HubID memoryPool, void ∗memoryBlock)
• L1_Status L1_AllocateMemoryBlock_WT (L1_HubID memoryPool, void ∗∗memoryBlock, L1_-

UINT16 size, L1_Timeout timeout)
• L1_Status L1_AllocateMemoryBlock_NW (L1_HubID memoryPool, void ∗∗memoryBlock, L1_-

UINT16 size)

9.7.1 Detailed Description

The Resource Hub, has the following properties, see also the section The OpenComRTOS Hub Concept.

L1_MemoryPool is a data structure representing a list of memory Resources, managed by a specific instan-
tiation of a L1_Hub.

• State of every memory block in the pool:

– Bool: Locked

– L1_UINT16: size > 0 AND ((2∗∗N-1) < size < (2∗∗N))

– TaskID: OwningTask

– L1_Priority: CeilingPriority // not implemented

• Synchronisation Predicate upon L1_Allocate_MemoryBlock:

– Predicate: not Locked AND size available blocks >= requested size AND size available blocks==2∗∗N

* Action: Locked := TRUE, OwningTask := Packet->RequestingTaskID

– Predicate: Locked OR size available blocks < requested size OR size available blocks /= 2∗∗N

* Action: insert Request Packet in waiting list, (priority inheritance is not used)

• Synchronisation Predicate upon L1_Deallocate_MemoryBlock:

– Predicate: Locked AND OwningTask == Packet->RequestingTaskID

OpenComRTOS-Suite 1.4.3.3 Manual

104 Module Documentation

– Action: Locked := FALSE, OwningTask := None, apply LockResource Action on next waiting
Tasks in waiting list. (whole list myst be checked until the Predicate holds)

• Invariant(s):

– If a task is waiting and there is a free block of large enough size, the waiting task will get a
block allocated

• Notes:

– Locked attribute may be redundant in the implementation.

– A task can request to lock another memory block while holding a block

– The current release implements the memory pool as list of equally sized blocks, defined at
design time.

9.7.2 Example

The the code shown in section MemoryPoolExampleTEP shows a Task that utilises a Memory Pool Hub
to allocate one block of 1024 bytes of memory. It then prints the address of the memory block onto the
console before deallocating the memory block, before releasing it again.

9.7.2.1 Entities

• MPool1: Memory Pool Hub:

– BlockSize = 1024

– NumberOfBlocks = 1

• Shs1: A Stdio Host Server

• Task1: The Task that performs the operations, uses the function MemoryPoolExampleTEP() as Task
Entry Point.

9.7.2.2 MemoryPoolExampleTEP

void MemoryPoolExampleTEP(L1_TaskArguments Arguments)
{

/* Pointer of the memory block, to be allocated */
L1_BYTE * memoryBlock = NULL;

/* Allocating the memory block. */
if(RC_FAIL == L1_AllocateMemoryBlock_W(MPool1, &memoryBlock, 1024))
{

Shs_putString_W(Shs1, "Error could not allocate the memory block.\n");
exit(-1);

}
Shs_putString_W(Shs1, "Could successfully allocate the memory block at: ");
Shs_putInt_W(Shs1, memoryBlock, ’d’);
Shs_putString_W(Shs1, "\n");

/* Deallocating the previously allocated memory block */
if(RC_FAIL == L1_DeallocateMemoryBlock_W(MPool1, memoryBlock))

OpenComRTOS-Suite 1.4.3.3 Manual

9.7 Memory Pool Hub Operations 105

{
Shs_putString_W(Shs1, "Error in deallocation of the memory block\n");
exit(-2);

}
Shs_putString_W(Shs1, "\nPress enter to terminate the program\n");

}

9.7.3 Function Documentation

9.7.3.1 L1_Status L1_AllocateMemoryBlock_NW (L1_HubID memoryPool, void ∗∗
memoryBlock, L1_UINT16 size)

Acquires a memory-block from a memory pool. This call returns immediately independent of whether or
not a MemoryBlock was available or not.

Parameters
memoryPool the ID of the MemoryPool from which to acquire a region of memory with the size specified

by the parameter Size.
memoryBlock if the service completed successfully, this will point to a pointer where the allocated memory

block is located.This memory can then be used by the Task. Otherwise, this variable will
point to a NULL pointer.

size the desired size of the MemoryBlock. However, it is currently not used correctly by the
function.

Returns

L1_Status

• RC_OK The service completed successfully, memoryBlock points to a pointer which points to
the allocated MemoryBlock.

• RC_FAIL The service failed, memoryBlock will point to a NULL pointer.

Warning

The memory pool must be mapped to the same node as the task calling this function.

Precondition

• memoryPool must be local

Postcondition

• Calling task ready.

9.7.3.2 L1_Status L1_AllocateMemoryBlock_W (L1_HubID memoryPool, L1_BYTE ∗∗
memoryBlock, L1_UINT16 size)

Acquires a memory-block from a local memory pool. This service waits till a memory block is available.

Parameters
memoryPool the ID of the MemoryPool from which to acquire a region of memory with the size specified

by the parameter Size.

OpenComRTOS-Suite 1.4.3.3 Manual

106 Module Documentation

memoryBlock if the service completed successfully, this will point to a pointer where the allocated memory
block is located. This memory can then be used by the Task. Otherwise, this variable will
point to a NULL pointer.

size the desired size of the MemoryBlock.

Returns

L1_Status

• RC_OK The service completed successfully, Memory points to a pointer which points to the
allocated MemoryBlock.

• RC_FAIL The service failed, Memory will point to a NULL pointer.

Warning

The memory pool must be mapped to the same node as the task calling this function.

Precondition

• memoryPool must be local

Postcondition

• Calling task ready.

9.7.3.3 L1_Status L1_AllocateMemoryBlock_WT (L1_HubID memoryPool, void ∗∗
memoryBlock, L1_UINT16 size, L1_Timeout timeout)

Acquires a memory-block from a memory pool. Waits until either a memory-block becomes available or
the timeout expired, depending on what happens earlier.

Parameters
memoryPool the ID of the MemoryPool from which to acquire a region of memory with the size specified

by the parameter Size.
memoryBlock if the service completed successfully, this will point to a pointer where the allocated memory

block is located. This memory can then be used by the Task. Otherwise, this variable will
point to a NULL pointer.

size the desired size of the MemoryBlock. However, it is currently not used correctly by the
function.

timeout of type L1_Timeout, the number of system ticks the call should wait for a MemoryBlock to
become available.

Returns

L1_Status

• RC_OK The service completed successfully, memoryBlock points to a pointer which points to
the allocated MemoryBlock.

• RC_FAIL The service failed, memoryBlock will point to a NULL pointer.

• RC_TO The timeout expired without a MemoryBlock becoming available, memoryBlock will
point to a NULL pointer.

OpenComRTOS-Suite 1.4.3.3 Manual

9.8 Task Management Operations 107

Warning

The memory pool must be mapped to the same node as the task calling this function.

Precondition

• memoryPool must be local

Postcondition

• Calling task ready.

9.7.3.4 L1_Status L1_DeallocateMemoryBlock_W (L1_HubID memoryPool, void ∗ memoryBlock
)

This Kernel service is called by a Task to release a memory-block back to its memory pool.

Parameters
memoryPool identifies the MemoryPool.

memoryBlock pointer to the memory-block to release

Returns

L1_Status:

• RC_OK service successful (a memory block was released to the memory pool)

• RC_FAIL service failed (the memory block was not released to the memory pool)

Precondition

• None

Postcondition

• Calling task ready

9.8 Task Management Operations

Functions

• L1_Status L1_StartTask_W (L1_PortID task)
• L1_Status L1_StopTask_W (L1_PortID task)
• L1_Status L1_SuspendTask_W (L1_PortID task)
• L1_Status L1_ResumeTask_W (L1_PortID task)
• L1_Status L1_WaitTask_WT (L1_Timeout timeout)

9.8.1 Detailed Description

OpenComRTOS offers the following operations to manage Tasks.

OpenComRTOS-Suite 1.4.3.3 Manual

108 Module Documentation

9.8.2 Function Documentation

9.8.2.1 L1_Status L1_ResumeTask_W (L1_PortID task)

This service resumes the task at the point it was when suspended.

Parameters
task ID of the Task to be resumed.

Returns

L1_Status:

• RC_OK, the Task has been resumed successfully.

• RC_FAIL, the service failed.

Precondition

• Task was in suspend state

Postcondition

• Task resumed at the point it was when suspended.

9.8.2.2 L1_Status L1_StartTask_W (L1_PortID task)

This service will start the task with TaskID and adds it to the READY list of the node on which the Task
resides.

Parameters
task the ID of the Task to be started.

Returns

L1_Status:

• RC_OK, if the Task has started successfully.

• RC_FAIL, if the service failed.

Precondition

• Task is inactive

• Task is initialised and ready to start

• All elements of TaskControlRecord are filled in, including entry-point and stack pointer.

• The Task cannot start itself

Postcondition

• Task is on the READY list (case RC_OK)

• RC_Fail will be raised in following cases:

– Task starts itself
– Task is not yet initialised (i.e. not all TCR fields are filled in)

OpenComRTOS-Suite 1.4.3.3 Manual

9.8 Task Management Operations 109

9.8.2.3 L1_Status L1_StopTask_W (L1_PortID task)

This service will stop the task with TaskID, removes it from the READY list, removes any pending Packets
on all waiting lists and restores the entry point.

Parameters
task the ID of the Task to be stopped.

Returns

L1_Status:

• RC_OK the Task has started successfully.

• RC_FAIL the service failed.

Precondition

• Task is not stopped

• The Task is not the requesting task itself

• The Task should not lock any resource. (Task should release all resources first using a secondary
entrypoint function

Postcondition

• Task is no longer on any waiting list

• Entry Point restored

• Any data may be lost

• Task is in stopped state

Note

Requests for the task can continue to arrive from other tasks No clean up yet for pending asynchronous
packets The kernel task will discard any Packets with as destination a stopped Task.

Warning

This service must be used with caution. It assumes perfect knowledge about the system by the invoking
Task. Normally only to be used when the Task is found to be misbehaving (e.g. Stack overflow,
numerical exception, etc.) Care should also be taken when stopping a driver task as this impacts
the routing functionality. Additional kernel service (messages) are used for the clean-up of pending
Packets in waiting list on other nodes Except for the case of two-phase services, it is sufficient to
remove the (at most single waiting) Packet from the appropriate waiting list (either local or remote)
(Waiting List of Port, Packet Pool or Kernel Input Port, or Driver Task Input Port). Only for (returning
of) remote services, it is possible that a Packet is destined for a stopped Task.

9.8.2.4 L1_Status L1_SuspendTask_W (L1_PortID task)

This service suspends task and marks it as such in the Task Control Record.

Parameters
task the ID of the Task to be suspended.

OpenComRTOS-Suite 1.4.3.3 Manual

110 Module Documentation

Returns

L1_Status:

• RC_OK, the Task has been suspended successfully.

• RC_FAIL, the service failed.

Precondition

• The Task is not the requesting task itself

Postcondition

• Task is marked as suspended

• Requests for the task can continue to arrive from other tasks.

Note

The suspend service is the fastest way to prevent a Task from executing any further code. It should only
be used when the application has a good reason and needs to be followed by an analysis, eventually
resulting in a corrective action (e.g. by an operator or stopping and restarting a Task).

Pending Packets in any waiting list remain pending, and are continued to be processed e.g. synchronisation.
In particular, the Task may remain and inserted in the READY List. The task is however never made
RUNNING. Hence, the suspend state of a Task is only changing the status of the task preventing it from
being scheduled until the task is resumed.

9.8.2.5 L1_Status L1_WaitTask_WT (L1_Timeout timeout)

This Kernel service is called by a Task to wait for a specified time interval.

Parameters
timeout how many system ticks the task wants to wait.

Returns

L1_Status:

• RC_TO Service returned after Timeout.

• RC_FAIL service failed.

Precondition

• None

Postcondition

• Calling task ready.

9.9 Base Variable types

Typedefs

• typedef unsigned char L1_BYTE

OpenComRTOS-Suite 1.4.3.3 Manual

9.9 Base Variable types 111

• typedef int L1_INT32
• typedef short int L1_INT16
• typedef unsigned int L1_UINT32
• typedef unsigned short L1_UINT16
• typedef L1_BYTE L1_BOOL

Variables

• const L1_BYTE L1_BYTE_MIN = 0x0
• const L1_BYTE L1_BYTE_MAX = 0xFF
• const L1_UINT16 L1_UINT16_MIN = 0x0
• const L1_UINT16 L1_UINT16_MAX = 0xFFFF
• const L1_UINT32 L1_UINT32_MIN = 0x0
• const L1_UINT32 L1_UINT32_MAX = 0xFFFFFFFF
• const L1_INT16 L1_INT16_MIN = (-32768)
• const L1_INT16 L1_INT16_MAX = 32767
• const L1_INT32 L1_INT32_MIN = (-2147483647 - 1)
• const L1_INT32 L1_INT32_MAX = 2147483647

9.9.1 Typedef Documentation

9.9.1.1 typedef L1_BYTE L1_BOOL

L1_BOOL is a basic integer type sufficient to represent the values: L1_TRUE and L1_FALSE. (size de-
pends on target)

9.9.1.2 typedef unsigned char L1_BYTE

L1_BYTE is a 8-bit unsigned integer type.

See also

L1_BYTE_MIN
L1_BYTE_MAX

9.9.1.3 typedef short int L1_INT16

L1_INT16 is a 16-bit signed integer type.

See also

L1_INT16_MIN
L1_INT16_MAX

9.9.1.4 typedef int L1_INT32

INT32 is a 32-bit signed integer type.

See also

L1_INT32_MIN
L1_INT32_MAX

OpenComRTOS-Suite 1.4.3.3 Manual

112 Module Documentation

9.9.1.5 typedef unsigned short L1_UINT16

UINT16 is a 16-bit unsigned integer type.

See also

L1_UINT16_MIN
L1_UINT16_MAX

9.9.1.6 typedef unsigned int L1_UINT32

UINT32 is a 32-bit unsigned integer type.

See also

L1_UINT32_MIN
L1_UINT32_MAX

9.9.2 Variable Documentation

9.9.2.1 const L1_BYTE L1_BYTE_MAX = 0xFF

The maximal value of a L1_BYTE variable.

9.9.2.2 const L1_BYTE L1_BYTE_MIN = 0x0

The minimal value of a L1_BYTE variable.

9.9.2.3 const L1_INT16 L1_INT16_MAX = 32767

The maximal value of a L1_INT16 variable.

9.9.2.4 const L1_INT16 L1_INT16_MIN = (-32768)

The minimal value of a L1_INT16 variable.

9.9.2.5 const L1_INT32 L1_INT32_MAX = 2147483647

The maximal value of a L1_INT32 variable.

9.9.2.6 const L1_INT32 L1_INT32_MIN = (-2147483647 - 1)

The minimal value of a L1_INT32 variable.

9.9.2.7 const L1_UINT16 L1_UINT16_MAX = 0xFFFF

The maximal value of a L1_UINT16 variable.

OpenComRTOS-Suite 1.4.3.3 Manual

9.10 Types related to Timer Handling 113

9.9.2.8 const L1_UINT16 L1_UINT16_MIN = 0x0

The minimal value of a L1_UINT16 variable.

9.9.2.9 const L1_UINT32 L1_UINT32_MAX = 0xFFFFFFFF

The maximal value of a L1_UINT32 variable.

9.9.2.10 const L1_UINT32 L1_UINT32_MIN = 0x0

The minimal value of a L1_UINT32 variable.

9.10 Types related to Timer Handling

Typedefs

• typedef L1_UINT32 L1_Timeout
• typedef L1_UINT32 L1_Time

Variables

• const L1_UINT32 L1_Time_MIN = 0x0
• const L1_UINT32 L1_Time_MAX = 0xFFFFFFFF

9.10.1 Typedef Documentation

9.10.1.1 typedef L1_UINT32 L1_Time

This datatype is used to represent the number of expired ticks.

See also

L1_Time_MIN
L1_Time_MAX

9.10.1.2 typedef L1_UINT32 L1_Timeout

L1_Timeout is a basic unsigned integer type that represents a timeout value in milliseconds. The maximum
value, allowed by the appropriate L1_Timeout integer type, is interpreted as an infinite timeout. For exam-
ple if L1_Timeout is provided by the means of a 16-bit or 32bit unsigned integer, then the infinite timeout is
0xFFFF(FFFF) Hex. The infinite timeout is (should be) referred as named constant L1_Infinite_TimeOut

9.10.2 Variable Documentation

9.10.2.1 const L1_UINT32 L1_Time_MAX = 0xFFFFFFFF

The maximal value of a L1_Time variable.

OpenComRTOS-Suite 1.4.3.3 Manual

114 Module Documentation

9.10.2.2 const L1_UINT32 L1_Time_MIN = 0x0

The minimal value of a L1_Time variable.

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 10

File Documentation

10.1 include/L1_api_apidoc.h File Reference

#include <L1_types.h>

#include <kernel/L1_port_api.h>

#include <kernel/L1_packet_api.h>

#include <kernel/L1_task_api.h>

#include <kernel/L1_kernel_types.h>

#include <kernel/L1_kernel_api.h>

#include <L1_hal_asm.h>

#include <kernel/L1_hub_api.h>

Defines

• #define OCR_VERSION 0x01040303
• #define theServicePacket (L1_CurrentTaskCR->RequestPacket)

Functions

• L1_UINT32 L1_GetVersion (void)
• int L1_runOpenComRTOS (L1_UINT32 NodeNumberOfTasks, L1_UINT32 NodeNumberOfHubs)
• L1_Status L1_PutPacketToPort_W (L1_HubID port)
• L1_Status L1_GetPacketFromPort_W (L1_HubID port)
• L1_Status L1_PutPacketToPort_WT (L1_HubID port, L1_Timeout timeout)
• L1_Status L1_GetPacketFromPort_WT (L1_HubID port, L1_Timeout timeout)
• L1_Status L1_PutPacketToPort_NW (L1_HubID port)
• L1_Status L1_GetPacketFromPort_NW (L1_HubID port)
• L1_Status L1_RaiseEvent_W (L1_HubID event)
• L1_Status L1_TestEvent_W (L1_HubID event)
• L1_Status L1_RaiseEvent_WT (L1_HubID event, L1_Timeout timeout)
• L1_Status L1_TestEvent_WT (L1_HubID event, L1_Timeout timeout)
• L1_Status L1_RaiseEvent_NW (L1_HubID event)

116 File Documentation

• L1_Status L1_TestEvent_NW (L1_HubID event)
• L1_Status L1_SignalSemaphore_W (L1_HubID semaphore)
• L1_Status L1_TestSemaphore_W (L1_HubID semaphore)
• L1_Status L1_SignalSemaphore_WT (L1_HubID semaphore, L1_Timeout timeout)
• L1_Status L1_TestSemaphore_WT (L1_HubID semaphore, L1_Timeout timeout)
• L1_Status L1_SignalSemaphore_NW (L1_HubID semaphore)
• L1_Status L1_TestSemaphore_NW (L1_HubID semaphore)
• L1_Status L1_LockResource_W (L1_HubID resource)
• L1_Status L1_UnlockResource_W (L1_HubID resource)
• L1_Status L1_LockResource_WT (L1_HubID resource, L1_Timeout timeout)
• L1_Status L1_UnlockResource_WT (L1_HubID resource, L1_Timeout timeout)
• L1_Status L1_LockResource_NW (L1_HubID resource)
• L1_Status L1_UnlockResource_NW (L1_HubID resource)
• L1_Status L1_EnqueueFifo_W (L1_HubID fifo)
• L1_Status L1_DequeueFifo_W (L1_HubID fifo)
• L1_Status L1_EnqueueFifo_WT (L1_HubID fifo, L1_Timeout timeout)
• L1_Status L1_DequeueFifo_WT (L1_HubID fifo, L1_Timeout timeout)
• L1_Status L1_EnqueueFifo_NW (L1_HubID fifo)
• L1_Status L1_DequeueFifo_NW (L1_HubID fifo)
• L1_Status L1_AllocateMemoryBlock_W (L1_HubID memoryPool, L1_BYTE ∗∗memoryBlock, L1_-

UINT16 size)
• L1_Status L1_DeallocateMemoryBlock_W (L1_HubID memoryPool, void ∗memoryBlock)
• L1_Status L1_AllocateMemoryBlock_WT (L1_HubID memoryPool, void ∗∗memoryBlock, L1_-

UINT16 size, L1_Timeout timeout)
• L1_Status L1_AllocateMemoryBlock_NW (L1_HubID memoryPool, void ∗∗memoryBlock, L1_-

UINT16 size)
• L1_Status L1_StartTask_W (L1_PortID task)
• L1_Status L1_StopTask_W (L1_PortID task)
• L1_Status L1_SuspendTask_W (L1_PortID task)
• L1_Status L1_ResumeTask_W (L1_PortID task)
• L1_Status L1_WaitTask_WT (L1_Timeout timeout)

10.1.1 Define Documentation

10.1.1.1 #define OCR_VERSION 0x01040303

The L1_UINT32 value of is formatted the following way:

• MSByte: Major Version of the Kernel

• 23--16: Minor Version

• 15--8 : Release status:

– 0: Alpha

– 1: Beta

– 2: Release Candidate

– 3: Public Release

• LSByte: Patch-level

This number is loosely associated with the OpenVE version number.

OpenComRTOS-Suite 1.4.3.3 Manual

10.2 include/L1_types_apidoc.h File Reference 117

10.1.1.2 #define theServicePacket (L1_CurrentTaskCR->RequestPacket)

This is the pointer to the preallocated service packet of the current task.

10.1.2 Function Documentation

10.1.2.1 L1_UINT32 L1_GetVersion (void)

This service returns the Kernel version of OpenComRTOS.

Returns

L1_UINT32, the value of is formatted the following way:

• MSByte: Major Version of the Kernel

• 23--16: Minor Version

• 15--8 : Release status:

– 0: Alpha
– 1: Beta
– 2: Release Candidate
– 3: Public Release

• LSByte: Patch-level

10.1.2.2 int L1_runOpenComRTOS (L1_UINT32 NodeNumberOfTasks, L1_UINT32
NodeNumberOfHubs)

This function starts the execution of the OpenComRTOS kernel.

Parameters
NodeNum-
berOfTasks

is the number of tasks on the given node.

NodeNum-
berOfHubs

the number of Hubs on this node.

Returns

This function does not return.

10.2 include/L1_types_apidoc.h File Reference

#include <L1_hal_types.h>

Defines

• #define L1_FALSE 0U
• #define L1_TRUE 1U
• #define L1_GLOBALID_SIZE 32
• #define L1_GLOBALID_MASK 0xFFFFFF00U

OpenComRTOS-Suite 1.4.3.3 Manual

118 File Documentation

Typedefs

• typedef unsigned char L1_BYTE
• typedef int L1_INT32
• typedef short int L1_INT16
• typedef unsigned int L1_UINT32
• typedef unsigned short L1_UINT16
• typedef L1_BYTE L1_BOOL
• typedef L1_BYTE L1_Priority
• typedef void ∗ L1_TaskArguments
• typedef L1_UINT32 L1_Timeout
• typedef L1_UINT32 L1_Time
• typedef void(∗ L1_TaskFunction)(L1_TaskArguments Arguments)
• typedef L1_UINT32 L1_TaskID
• typedef L1_UINT32 L1_PortID
• typedef L1_UINT32 L1_HubID

Enumerations

• enum L1_ServiceID {

L1_SID_START_TASK, L1_SID_SUSPEND_TASK, L1_SID_RESUME_TASK, L1_SID_STOP_-
TASK,

L1_SID_WAIT_TASK, L1_SID_AWAKE_TASK, L1_SID_RETURN, L1_SID_ANY_PACKET,

L1_SID_SEND_TO_HUB, L1_SID_RECEIVE_FROM_HUB, L1_SID_IOCTL_HUB, L1_CHANGE_-
PRIORITY,

L1_SID_CHANGE_PACKET_PRIORITY }
• enum L1_ServiceType {

L1_SERVICE, L1_EVENT, L1_SEMAPHORE, L1_PORT,

L1_RESOURCE, L1_FIFO, L1_PACKETPOOL, L1_MEMORYPOOL }
• enum L1_HubControlType { L1_IOCTL_HUB_OPEN }
• enum L1_Status { RC_OK, RC_FAIL, RC_TO }

Variables

• const L1_BYTE L1_BYTE_MIN
• const L1_BYTE L1_BYTE_MAX
• const L1_INT32 L1_INT32_MIN
• const L1_INT32 L1_INT32_MAX
• const L1_INT16 L1_INT16_MIN
• const L1_INT16 L1_INT16_MAX
• const L1_UINT32 L1_UINT32_MIN
• const L1_UINT32 L1_UINT32_MAX
• const L1_UINT16 L1_UINT16_MIN
• const L1_UINT16 L1_UINT16_MAX
• const L1_UINT32 L1_Time_MIN
• const L1_UINT32 L1_Time_MAX

OpenComRTOS-Suite 1.4.3.3 Manual

10.2 include/L1_types_apidoc.h File Reference 119

10.2.1 Define Documentation

10.2.1.1 #define L1_FALSE 0U

10.2.1.2 #define L1_GLOBALID_MASK 0xFFFFFF00U

10.2.1.3 #define L1_GLOBALID_SIZE 32

10.2.1.4 #define L1_TRUE 1U

10.2.2 Typedef Documentation

10.2.2.1 typedef L1_UINT32 L1_HubID

L1_HubID is a type that represents an identifier of a Hub on a Node. L1_HubID is a system wide identifier
represented by a 32 bit datastructure divided in the following 8bit fields: LocalHubID, NodeID, SiteID,
ClusterID.

10.2.2.2 typedef L1_UINT32 L1_PortID

L1_PortID is a type that represents an Task Input Port identifier of a Task. L1_PortID is a system wide
identifier represented by a 32 bit data structure divided in the following 8bit fields: LocalTaskID, NodeID,
SiteID, ClusterID.

10.2.2.3 typedef L1_BYTE L1_Priority

L1_Priority is a basic unsigned integer type sufficient to represent the values from 0 to 255, identifying the
priority of a Task or a Packet.

10.2.2.4 typedef void∗ L1_TaskArguments

Argument to a Task Entry Point.

10.2.2.5 typedef void(∗ L1_TaskFunction)(L1_TaskArguments Arguments)

L1_TaskFunction is a pointer to a function with one input parameter of type L1_TaskArguments. The
function, pointed to by L1_TaskFunction is used as an entry point to start a Task.

10.2.2.6 typedef L1_UINT32 L1_TaskID

L1_EntityAddress is an abstract type that represents an identifier of an Entity. L1_EntityAddress is a
system wide address represented by a 32 bit data structure with the following 8bit fields: LocalEntityID,
NodeID, SiteID, ClusterID. In practice at L1 we will only find EntityAdresses for Tasks en HubID and
the context will allow to distinguish between them. In this context we call them L1_TaskID and L1_-
HubID. L1_ TaskID is a type that represents an identifier of a Task .L1_TaskID is a system wide identifier
represented by a 32 bit data structure divided in the following 8bit fields: LocalTaskID, NodeID, SiteID,
ClusterID.

OpenComRTOS-Suite 1.4.3.3 Manual

120 File Documentation

10.2.3 Enumeration Type Documentation

10.2.3.1 enum L1_HubControlType

This enumeartion lists all IO Control Messages that can be sent to a Hub.

Enumerator:

L1_IOCTL_HUB_OPEN IO Control Message to initialise a Hub. This is used by the Kernel when
initialising the Hubs.

10.2.3.2 enum L1_ServiceID

This enumerates the different service identifiers available in OpenComRTOS.

Enumerator:

L1_SID_START_TASK Service identifier for starting a task

L1_SID_SUSPEND_TASK Service identifier for suspension of a task

L1_SID_RESUME_TASK Service identifier for resumption of a task

L1_SID_STOP_TASK Service identifier for stopping a task

L1_SID_WAIT_TASK Service identifier for putting a task temporarily in waiting state (timeout).

L1_SID_AWAKE_TASK Service identifier for notifying the kernel of a timer expiry, i.e. timeout
event (typically only used by timer HW ISR).

L1_SID_RETURN Service identifier for returning from a service request.

L1_SID_ANY_PACKET Service identifier for receiving any packet (only used for WaitForPacket).

L1_SID_SEND_TO_HUB Service identifier for sending an L1_Packet to a Hub (also referred to as
putting). The type of Hub gets encoded according to the enumeration L1_ServiceType.
See also

L1_ServiceType.

L1_SID_RECEIVE_FROM_HUB Service identifier for receiving an L1_Packet from a Hub (also
referred to as getting). The type of Hub gets encoded according to the enumeration L1_ServiceType.
See also

L1_ServiceType.

L1_SID_IOCTL_HUB Service identifier to control the Hub.
See also

L1_HubControlType

L1_CHANGE_PRIORITY Service identifier to boost the priority of a Task. Used to boost the pri-
ority of a Task in distributed systems.
Warning

This is only used by the Kernel iteself, it is not meant to be used by applications.

L1_SID_CHANGE_PACKET_PRIORITY Service identifier to boost the priority of a Packet. Used
to boost the priority of the Request Packet of a Task in distributed systems.
Warning

This is only used by the Kernel iteself, it is not meant to be used by applications.

OpenComRTOS-Suite 1.4.3.3 Manual

10.3 src/kernel/L1_types.c File Reference 121

10.2.3.3 enum L1_ServiceType

L1_ServiceType is an enumeration type used to identify the L1-Services, provided by the Kernel.

Enumerator:

L1_SERVICE Service identifier for a generic service.

L1_EVENT Service identifier for an event.

L1_SEMAPHORE Service identifier for a semaphore.

L1_PORT Service identifier for a port.

L1_RESOURCE Service identifier for a resource.

L1_FIFO Service identifier for a FIFO buffer.

L1_PACKETPOOL Service identifier for a packet pool.

L1_MEMORYPOOL Service identifier for a memory pool.

10.2.3.4 enum L1_Status

L1_Status is an enumeration type used to specify the result of a service request (success, failure, etc.).

Enumerator:

RC_OK Return code for a successful request

RC_FAIL Return code for a failed request

RC_TO Return code for a failed request after the timeout expired.

10.3 src/kernel/L1_types.c File Reference

#include <L1_types.h>

Variables

• const L1_BYTE L1_BYTE_MIN = 0x0
• const L1_BYTE L1_BYTE_MAX = 0xFF
• const L1_UINT16 L1_UINT16_MIN = 0x0
• const L1_UINT16 L1_UINT16_MAX = 0xFFFF
• const L1_UINT32 L1_UINT32_MIN = 0x0
• const L1_UINT32 L1_UINT32_MAX = 0xFFFFFFFF
• const L1_INT16 L1_INT16_MIN = (-32768)
• const L1_INT16 L1_INT16_MAX = 32767
• const L1_INT32 L1_INT32_MIN = (-2147483647 - 1)
• const L1_INT32 L1_INT32_MAX = 2147483647
• const L1_UINT32 L1_Time_MIN = 0x0
• const L1_UINT32 L1_Time_MAX = 0xFFFFFFFF

OpenComRTOS-Suite 1.4.3.3 Manual

122 File Documentation

OpenComRTOS-Suite 1.4.3.3 Manual

Part V

Stdio Host Service

Chapter 11

File Index

11.1 File List

Here is a list of all files with brief descriptions:

src/include/StdioHostService/StdioHostClient.h . 127
src/include/StdioHostService/TraceHostClient.h . 133

126 File Index

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 12

File Documentation

12.1 src/include/StdioHostService/StdioHostClient.h File Reference

#include <kernel/L1_trace_api.h>

#include <StdioHostService/TraceHostClient.h>

#include <L1_types.h>

Defines

• #define SHS_VERSION 0x01000304

• #define ShsGetVersion() ((L1_UINT32) SHS_VERSION)

Functions

• L1_Status Shs_putChar_W (L1_HubID shs, L1_BYTE charValue)

• L1_Status Shs_getChar_W (L1_HubID shs, L1_BYTE ∗pChar)

• L1_Status Shs_putInt_W (L1_HubID shs, L1_INT32 intValue, L1_BYTE format)

• L1_Status Shs_getInt_W (L1_HubID shs, L1_INT32 ∗pInt)

• L1_Status Shs_putFloat_W (L1_HubID shs, float floatValue, L1_BYTE prec)

• L1_Status Shs_getFloat_W (L1_HubID shs, float ∗pFloat)

• L1_Status Shs_putString_W (L1_HubID shs, const char ∗str)

• L1_Status Shs_getString_W (L1_HubID shs, L1_UINT32 maxLength, char ∗pStr, L1_UINT32 ∗pRealLength)

• L1_Status Shs_openFile_W (L1_HubID shs, const char ∗fileName, const char ∗mode, L1_UINT32
∗fileHandle)

• L1_Status Shs_closeFile_W (L1_HubID shs, L1_UINT32 fileHandle)

• L1_Status Shs_writeToFile_W (L1_HubID shs, L1_UINT32 fileHandle, L1_BYTE ∗buffer, L1_-
UINT32 toWrite, L1_UINT32 ∗pWritten)

• L1_Status Shs_readFromFile_W (L1_HubID shs, L1_UINT32 fileHandle, L1_BYTE ∗buffer, L1_-
UINT32 toRead, L1_UINT32 ∗pRead)

128 File Documentation

12.1.1 Define Documentation

12.1.1.1 #define SHS_VERSION 0x01000304

The L1_UINT32 value of is formatted the following way:

• MSByte: Major Version of the Kernel

• 23--16: Minor Version

• 15--8 : Release status:

– 0: Alpha

– 1: Beta

– 2: Release Candidate

– 3: Public Release

• LSByte: Patch-level

This number is loosly associated with the OpenVE version number.

12.1.1.2 #define ShsGetVersion() ((L1_UINT32) SHS_VERSION)

This service returns the Kernel version of OpenComRTOS.

Returns

L1_UINT32, the value of is formatted the following way:

• MSByte: Major Version of the Kernel

• 23--16: Minor Version

• 15--8 : Release status:

– 0: Alpha
– 1: Beta
– 2: Release Candidate
– 3: Public Release

• LSByte: Patch-level

12.1.2 Function Documentation

12.1.2.1 L1_Status Shs_closeFile_W (L1_HubID shs, L1_UINT32 fileHandle)

Closes a file previously opened using the function Shs_openFile().

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.

fileHandle is the file-handle previously acquired from the Stdio Host Server using the function Shs_-
openFile().

OpenComRTOS-Suite 1.4.3.3 Manual

12.1 src/include/StdioHostService/StdioHostClient.h File Reference 129

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

12.1.2.2 L1_Status Shs_getChar_W (L1_HubID shs, L1_BYTE ∗ pChar)

Retrieves one Character from the Stdio Host Server console. The retrieved character is returned to the user
in the character value at pChar.

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.

pChar is the Pointer to a variable of type L1_BYTE which should hold the retrieved character.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

12.1.2.3 L1_Status Shs_getFloat_W (L1_HubID shs, float ∗ pFloat)

Retrieves a float value from the Stdio Host Server console. The retrieved float value is returned to the user
as a pointer.

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.

pFloat is the pointer to a variable of the float type which holds the retrieved float value.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

12.1.2.4 L1_Status Shs_getInt_W (L1_HubID shs, L1_INT32 ∗ pInt)

Retrieves an integer from the Stdio Host Server console. The retrieved integer is returned to the user in the
character value at pInt.

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.

pInt is the pointer to a variable of type int which should hold the retrieved integer value.

Returns

L1_Status

OpenComRTOS-Suite 1.4.3.3 Manual

130 File Documentation

• RC_OK: The request was successful

• RC_FAIL: The request failed.

12.1.2.5 L1_Status Shs_getString_W (L1_HubID shs, L1_UINT32 maxLength, char ∗ pStr,
L1_UINT32 ∗ pRealLength)

Retrieved a string value from the Stdio Host Server.

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.

maxLength is the the number of characters the buffer (pStr) can hold.
pStr is the pointer to character array which should be filled with the retrieved string.

pRealLength is the pointer to an integer which will hold number of returned characters, including the
terminating zero.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

12.1.2.6 L1_Status Shs_openFile_W (L1_HubID shs, const char ∗ fileName, const char ∗ mode,
L1_UINT32 ∗ fileHandle)

Opens a file on the Stdio Host Server file system.

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.

fileName is the name of a file to open.
mode is the mode in which the file should be opened. It can contain 1 or 2 symbols.

fileHandle is the pointer to file handle associated with the opened file. This handle in generated by the
StdioHostService.

Returns

L1_Status

• RC_OK: The request was successful.

• RC_FAIL: The request failed.

12.1.2.7 L1_Status Shs_putChar_W (L1_HubID shs, L1_BYTE charValue)

Writes one character value onto the console associated with the Stdio Host Server.

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.

charValue is the character to write onto the console.

OpenComRTOS-Suite 1.4.3.3 Manual

12.1 src/include/StdioHostService/StdioHostClient.h File Reference 131

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

12.1.2.8 L1_Status Shs_putFloat_W (L1_HubID shs, float floatValue, L1_BYTE prec)

This function outputs a float value (floatValue) into the console associated with the Stdio Host Server. The
precision of output of a float value must be specified using the prec parameter.

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.

floatValue is the float value to output into the console.
prec is the character specifying the precision of output of a float value onto the console.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

12.1.2.9 L1_Status Shs_putInt_W (L1_HubID shs, L1_INT32 intValue, L1_BYTE format)

This function outputs an integer (intValue) into the console associated with the Stdio Host Server. The
output format (octal, decimal, hexa-decimal) must be specified using the character format.

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.

intValue is the integer to output into the console.
format is the character specifying in which format the integer should be written onto the console.

The following are permitted:
• ’o’ -- Octal output
• ’d’ -- Decimal output
• ’x’ -- Hexa-decimal output.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

12.1.2.10 L1_Status Shs_putString_W (L1_HubID shs, const char ∗ str)

Prints the string str with onto the console, only length characters are written on to the console.

OpenComRTOS-Suite 1.4.3.3 Manual

132 File Documentation

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.
str is the C-string to write onto the console.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

12.1.2.11 L1_Status Shs_readFromFile_W (L1_HubID shs, L1_UINT32 fileHandle, L1_BYTE ∗
buffer, L1_UINT32 toRead, L1_UINT32 ∗ pRead)

Reads from a file opened by the server.

Parameters
shs - is the ID of the ShsInputPort of the Stdio Host Server.

fileHandle - is the file-handle previously acquired from the Stdio Host Server using the function Shs_-
openFile().

buffer is the pointer to the location where the retrieved data should be stored.
toRead - how many bytes should be read from the file.
pRead - how many bytes were actually retrieved from the file.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

12.1.2.12 L1_Status Shs_writeToFile_W (L1_HubID shs, L1_UINT32 fileHandle, L1_BYTE ∗
buffer, L1_UINT32 toWrite, L1_UINT32 ∗ pWritten)

This function writes the number of bytes (toWrite) of the byte array at buffer into the file indicated by
fileHandle.

Parameters
shs is the ID of the ShsInputPort of the Stdio Host Server.

fileHandle is the file-handle previously acquired from the Stdio Host Server using the function Shs_-
openFile().

buffer - the pointer to the first byte of the memory block to be written to the file.
toWrite - the number of bytes to be written into the file.

pWritten - pointer to an unsigned integer which contain the number of bytes that were actually written.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

OpenComRTOS-Suite 1.4.3.3 Manual

12.2 src/include/StdioHostService/TraceHostClient.h File Reference 133

12.2 src/include/StdioHostService/TraceHostClient.h File Reference

#include <L1_types.h>

Functions

• L1_Status DumpTraceBuffer_W (L1_HubID ServerInputPort)

12.2.1 Function Documentation

12.2.1.1 L1_Status DumpTraceBuffer_W (L1_HubID ServerInputPort)

Temporarily stops the tracing and meanwhile sends the content of the trace buffer to the StdioHostServer
specified in the parameter ServerInputPort.

Parameters
ServerInput-

Port
address of the Stdio Host Server Input port.

Returns

L1_Status:

• RC_OK: Dumping the trace buffer was completed successfully.

• RC_FAIL: Operation failed.

OpenComRTOS-Suite 1.4.3.3 Manual

134 File Documentation

OpenComRTOS-Suite 1.4.3.3 Manual

Part VI

Graphical Host Service

Chapter 13

Data Structure Index

13.1 Data Structures

Here are the data structures with brief descriptions:

GhsBrush . 141
GhsColour . 141
GhsPen . 142
GhsRect . 143

138 Data Structure Index

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 14

File Index

14.1 File List

Here is a list of all files with brief descriptions:

src/include/GraphicalHostService/GhsTypes.h . 145
src/include/GraphicalHostService/GraphicalHostClient.h . 145
src/include/GraphicalHostService/GraphicalHostService.h . 150

140 File Index

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 15

Data Structure Documentation

15.1 GhsBrush Struct Reference

#include <GhsTypes.h>

Data Fields

• GhsColour colour
• GhsBrushStyle style

15.1.1 Detailed Description

Defines the type describing a Brush as used by the Graphical Host Service.

15.1.2 Field Documentation

15.1.2.1 GhsColour colour

15.1.2.2 GhsBrushStyle style

The documentation for this struct was generated from the following file:

• src/include/GraphicalHostService/GhsTypes.h

15.2 GhsColour Struct Reference

#include <GhsTypes.h>

Data Fields

• L1_BYTE r
• L1_BYTE g
• L1_BYTE b

142 Data Structure Documentation

15.2.1 Detailed Description

Defines how Colours are represented in the Graphical Host Server Data structures.

15.2.2 Field Documentation

15.2.2.1 L1_BYTE b

Blue component

15.2.2.2 L1_BYTE g

Green component

15.2.2.3 L1_BYTE r

Red component

The documentation for this struct was generated from the following file:

• src/include/GraphicalHostService/GhsTypes.h

15.3 GhsPen Struct Reference

#include <GhsTypes.h>

Data Fields

• GhsColour colour
• L1_UINT32 lineWidth
• GhsPenStyle style

15.3.1 Detailed Description

Defines the type describing a Pen as used by the Graphical Host Service.

15.3.2 Field Documentation

15.3.2.1 GhsColour colour

15.3.2.2 L1_UINT32 lineWidth

15.3.2.3 GhsPenStyle style

The documentation for this struct was generated from the following file:

• src/include/GraphicalHostService/GhsTypes.h

OpenComRTOS-Suite 1.4.3.3 Manual

15.4 GhsRect Struct Reference 143

15.4 GhsRect Struct Reference

#include <GhsTypes.h>

Data Fields

• L1_UINT32 left
• L1_UINT32 top
• L1_UINT32 right
• L1_UINT32 bottom

15.4.1 Detailed Description

This structure represents a rectangle.

15.4.2 Field Documentation

15.4.2.1 L1_UINT32 bottom

15.4.2.2 L1_UINT32 left

15.4.2.3 L1_UINT32 right

15.4.2.4 L1_UINT32 top

The documentation for this struct was generated from the following file:

• src/include/GraphicalHostService/GhsTypes.h

OpenComRTOS-Suite 1.4.3.3 Manual

144 Data Structure Documentation

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 16

File Documentation

16.1 src/include/GraphicalHostService/GhsTypes.h File Reference

#include <L1_api.h>

Enumerations

• enum GhsBrushStyle { GhsBrushSolid = 1, GhsBrushDiagonal }
• enum GhsPenStyle { GhsPenSolid = 1 }

16.1.1 Enumeration Type Documentation

16.1.1.1 enum GhsBrushStyle

Defines the different styles a brush can have.

Enumerator:

GhsBrushSolid

GhsBrushDiagonal Not Implemented yet.

16.1.1.2 enum GhsPenStyle

Defines the different styles a pen can have.

Enumerator:

GhsPenSolid

16.2 src/include/GraphicalHostService/GraphicalHostClient.h File Ref-
erence

#include <GraphicalHostService/GhsTypes.h>

146 File Documentation

Functions

• L1_Status Ghs_openSession_W (L1_HubID ghsInputPort, L1_UINT32 ∗pSessionID)
• L1_Status Ghs_closeSession_W (L1_HubID ghsInputPort, L1_UINT32 sessionId)
• L1_Status Ghs_getServerVersion_W (L1_HubID ghsInputPort, L1_UINT32 ∗pServerVersion)
• L1_Status Ghs_setPen_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, GhsPenStyle pen-

Style, L1_BYTE lineWidth, L1_BYTE r, L1_BYTE g, L1_BYTE b)
• L1_Status Ghs_setBrush_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, GhsBrushStyle brush-

Style, L1_BYTE r, L1_BYTE g, L1_BYTE b)
• L1_Status Ghs_drawLine_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, L1_UINT32 x1,

L1_UINT32 y1, L1_UINT32 x2, L1_UINT32 y2)
• L1_Status Ghs_drawRect_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, L1_UINT32 x1,

L1_UINT32 y1, L1_UINT32 x2, L1_UINT32 y2)
• L1_Status Ghs_drawCircle_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, L1_UINT32 x,

L1_UINT32 y, L1_UINT32 r)
• L1_Status Ghs_drawText_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, L1_UINT16 x,

L1_UINT16 y, char ∗text)
• L1_Status Ghs_setTextColour_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, L1_BYTE r,

L1_BYTE g, L1_BYTE b)
• L1_Status Ghs_setCanvasSize_W (L1_HubID ghsInputPort, L1_UINT32 width, L1_UINT32 height)
• L1_Status Ghs_getCanvasSize_W (L1_HubID ghsInputPort, L1_UINT32 ∗width, L1_UINT32 ∗height)

16.2.1 Function Documentation

16.2.1.1 L1_Status Ghs_closeSession_W (L1_HubID ghsInputPort, L1_UINT32 sessionId)

Closes a previously opened session on the Graphical Host Server.

Parameters
ghsInputPort Input Port of the Graphical Host Server where to close the session.

sessionId ID of the session to close

Returns

L1_Status

• RC_OK the session could be closed.

• RC_FAIL the session could not be closed.

16.2.1.2 L1_Status Ghs_drawCircle_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession,
L1_UINT32 x, L1_UINT32 y, L1_UINT32 r)

Draws a circle defined by the centre point (x,y) and the radius r. The circle will be filled with the brush
defined by setBrush() and the surrounding line will be drawn with the pen specified for the ghsSession.

Parameters
ghsInputPort Address of the Graphical Host Server to send this request to.

ghsSession SessionID for the session to draw in.
x The X part of the centre point.
y The Y part of the centre point.
r The radius of the circle.

OpenComRTOS-Suite 1.4.3.3 Manual

16.2 src/include/GraphicalHostService/GraphicalHostClient.h File Reference 147

Returns

L1_Status

• RC_OK the request was successful.

• RC_FAIL the request was not successful.

16.2.1.3 L1_Status Ghs_drawLine_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession,
L1_UINT32 x1, L1_UINT32 y1, L1_UINT32 x2, L1_UINT32 y2)

Draws a line between the points x1,y1 and x2,y2, using the pen specified for the given ghsSession.

Parameters
ghsInputPort Address of the Graphical Host Server to send this request to.

ghsSession SessionID for the session to draw in
x1 The X part of the first point.
y1 The Y part of the first point.
x2 The X part of the second point.
y2 The Y part of the second point.

Returns

L1_Status

• RC_OK the request was successful.

• RC_FAIL the request was not successful.

16.2.1.4 L1_Status Ghs_drawRect_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession,
L1_UINT32 x1, L1_UINT32 y1, L1_UINT32 x2, L1_UINT32 y2)

Draws a rectangle defined by the points (x1,y1) and (x2,y2). The rectangle will be filled with the brush
defined by setBrush() and the surrounding line will be drawn with the pen specified for the ghsSession.

Parameters
ghsInputPort Address of the Graphical Host Server to send this request to.

ghsSession SessionID for the session to draw in.
x1 The X part of the first point.
y1 The Y part of the first point.
x2 The X part of the second point.
y2 The Y part of the second point.

Returns

L1_Status

• RC_OK the request was successful.

• RC_FAIL the request was not successful.

OpenComRTOS-Suite 1.4.3.3 Manual

148 File Documentation

16.2.1.5 L1_Status Ghs_drawText_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession,
L1_UINT16 x, L1_UINT16 y, char ∗ text)

This function draws the string s at the position (x,y) onto the canvas.

Parameters
ghsInputPort Address of the Graphical Host Server to send this request to.

ghsSession SessionID for the session to draw in.
x The X part of the first point.
y The Y part of the first point.

text The string to draw onto the canvas.

Returns

L1_Status

• RC_OK the request was successful.

• RC_FAIL the request was not successful.

16.2.1.6 L1_Status Ghs_getCanvasSize_W (L1_HubID ghsInputPort, L1_UINT32 ∗ width,
L1_UINT32 ∗ height)

This functions gets the size of the canvas the Graphical Host Server provides.

Parameters
ghsInputPort Address of the Graphical Host Server to send this request to.

width This parameter returns the horizontal size (x-axis) of the canvas in pixel.
height This parameter returns the vertial size (y-axis) of the canvas in pixel.

Returns

L1_Status

• RC_OK the request was successful.

• RC_FAIL the request was not successful.

16.2.1.7 L1_Status Ghs_getServerVersion_W (L1_HubID ghsInputPort, L1_UINT32 ∗
pServerVersion)

Queries the Graphical Host Server for its version number.

Parameters
ghsInputPort Port to which to send the query to.

pServerVersion After this function returns successfully, the L1_UINT32 which this pointer points to contains
the version number of the Graphical Host Server.

Returns

L1_Status

• RC_OK, ∗pVersion contains the version number of the server.

• RC_FAIL, operation failed, ∗pVersion is set to zero.

OpenComRTOS-Suite 1.4.3.3 Manual

16.2 src/include/GraphicalHostService/GraphicalHostClient.h File Reference 149

16.2.1.8 L1_Status Ghs_openSession_W (L1_HubID ghsInputPort, L1_UINT32 ∗ pSessionID)

Opens a session with the graphical host server indicated by ghsInputPort.

Parameters
ghsInputPort Input Port of the Graphical Host Server where to close the session.

pSessionID the L1_UINT32 variable this pointer points to will contain the sessionID of the newly opened
session. This ID has to be used whenever trying to communicate with the Graphical Host
Server.

Returns

L1_Status

• RC_OK the session could be created.

• RC_FAIL the session could not be created.

Warning

Once a Task does not want to interact with a Graphical Host Service any longer, do not forget to close
the session using the Function Ghs_closeSession_W().

16.2.1.9 L1_Status Ghs_setBrush_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession,
GhsBrushStyle brushStyle, L1_BYTE r, L1_BYTE g, L1_BYTE b)

Sets the fill color for the given. ghsSession

Parameters
ghsInputPort Address of the Graphical Host Server to send this request to.

ghsSession SessionID of the session for which to set the brush.
brushStyle The style of the brush to use.

r Red component of the color to set.
g Green component of the color to set.
b Blue component of the color to set.

Returns

L1_Status

• RC_OK the request was successful.

• RC_FAIL the request was not successful.

16.2.1.10 L1_Status Ghs_setCanvasSize_W (L1_HubID ghsInputPort, L1_UINT32 width,
L1_UINT32 height)

This functions sets the size of the canvas the Graphical Host Server provides.

Parameters
ghsInputPort Address of the Graphical Host Server to send this request to.

width This specifies the horizontal size (x-axis) of the canvas in pixel.
height This specified the vertial size (y-axis) of the canvas in pixel.

OpenComRTOS-Suite 1.4.3.3 Manual

150 File Documentation

Returns

L1_Status

• RC_OK the request was successful.

• RC_FAIL the request was not successful.

16.2.1.11 L1_Status Ghs_setPen_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession,
GhsPenStyle penStyle, L1_BYTE lineWidth, L1_BYTE r, L1_BYTE g, L1_BYTE b)

Sets the pen to use for the drawing operations in this session.

Parameters
ghsInputPort Address of the Graphical Host Server to send this request to.

ghsSession SessionID of the session for which to set the pen.
penStyle Value of the enumeration GhsPenStyle defining what pen to use.

lineWidth Width of the line in pixel.
r Red component of the color to set.
g Green component of the color to set.
b Blue component of the color to set.

Returns

L1_Status

• RC_OK the request was successful.

• RC_FAIL the request was not successful.

16.2.1.12 L1_Status Ghs_setTextColour_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession,
L1_BYTE r, L1_BYTE g, L1_BYTE b)

This function sets the colour with which text will be drawn.

Parameters
ghsInputPort Address of the Graphical Host Server to send this request to.

ghsSession SessionID for the session to draw in.
r Red component of the color to set.
g Green component of the color to set.
b Blue component of the color to set.

Returns

L1_Status

• RC_OK the request was successful.
• RC_FAIL the request was not successful.

16.3 src/include/GraphicalHostService/GraphicalHostService.h File
Reference

#include <GraphicalHostService/GraphicalHostClient.h>

OpenComRTOS-Suite 1.4.3.3 Manual

16.3 src/include/GraphicalHostService/GraphicalHostService.h File Reference 151

Defines

• #define GHS_VERSION 0x01000303

16.3.1 Define Documentation

16.3.1.1 #define GHS_VERSION 0x01000303

The L1_UINT32 value of is formatted the following way:

• MSByte: Major Version of the Kernel

• 23--16: Minor Version

• 15--8 : Release status:

– 0: Alpha

– 1: Beta

– 2: Release Candidate

– 3: Public Release

• LSByte: Patch-level

This number is loosly associated with the OpenVE version number.

OpenComRTOS-Suite 1.4.3.3 Manual

152 File Documentation

OpenComRTOS-Suite 1.4.3.3 Manual

Part VII

Open System Inspector Service

Chapter 17

Data Structure Index

17.1 Data Structures

Here are the data structures with brief descriptions:

_union_Hubs::_struct_L1_Event_ . 159
_union_Hubs::_struct_L1_Fifo_ . 159
_union_Hubs::_struct_L1_PacketPool_ . 160
_union_Hubs::_struct_L1_Resource_ . 160
_union_Hubs::_struct_L1_Semaphore_ . 161
_union_Hubs . 161
hubInfoStruct . 162
reqType . 162
taskInfoStruct . 163

156 Data Structure Index

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 18

File Index

18.1 File List

Here is a list of all files with brief descriptions:

include/OpenSystemInspector/OpenSystemInspectorClient.h 165
include/OpenSystemInspector/OpenSystemInspectorServer.h 169
include/OpenSystemInspector/OpenSystemInspectorService.h 170

158 File Index

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 19

Data Structure Documentation

19.1 _union_Hubs::_struct_L1_Event_ Struct Reference

#include <OpenSystemInspectorClient.h>

Data Fields

• char isSet

19.1.1 Field Documentation

19.1.1.1 char isSet

The documentation for this struct was generated from the following file:

• include/OpenSystemInspector/OpenSystemInspectorClient.h

19.2 _union_Hubs::_struct_L1_Fifo_ Struct Reference

#include <OpenSystemInspectorClient.h>

Data Fields

• short int size

• short int count

• short int head

• short int tail

160 Data Structure Documentation

19.2.1 Field Documentation

19.2.1.1 short int count

19.2.1.2 short int head

19.2.1.3 short int size

19.2.1.4 short int tail

The documentation for this struct was generated from the following file:

• include/OpenSystemInspector/OpenSystemInspectorClient.h

19.3 _union_Hubs::_struct_L1_PacketPool_ Struct Reference

#include <OpenSystemInspectorClient.h>

Data Fields

• short int size

19.3.1 Field Documentation

19.3.1.1 short int size

The documentation for this struct was generated from the following file:

• include/OpenSystemInspector/OpenSystemInspectorClient.h

19.4 _union_Hubs::_struct_L1_Resource_ Struct Reference

#include <OpenSystemInspectorClient.h>

Data Fields

• L1_BOOL locked

• unsigned int taskID

• unsigned char ceilingPrioriry

• unsigned char boostedPrioriry

OpenComRTOS-Suite 1.4.3.3 Manual

19.5 _union_Hubs::_struct_L1_Semaphore_ Struct Reference 161

19.4.1 Field Documentation

19.4.1.1 unsigned char boostedPrioriry

19.4.1.2 unsigned char ceilingPrioriry

19.4.1.3 L1_BOOL locked

19.4.1.4 unsigned int taskID

The documentation for this struct was generated from the following file:

• include/OpenSystemInspector/OpenSystemInspectorClient.h

19.5 _union_Hubs::_struct_L1_Semaphore_ Struct Reference

#include <OpenSystemInspectorClient.h>

Data Fields

• short int count

19.5.1 Field Documentation

19.5.1.1 short int count

The documentation for this struct was generated from the following file:

• include/OpenSystemInspector/OpenSystemInspectorClient.h

19.6 _union_Hubs Union Reference

#include <OpenSystemInspectorClient.h>

Data Structures

• struct _struct_L1_Event_
• struct _struct_L1_Fifo_
• struct _struct_L1_PacketPool_
• struct _struct_L1_Resource_
• struct _struct_L1_Semaphore_

Data Fields

• struct _union_Hubs::_struct_L1_Fifo_ Fifo
• struct _union_Hubs::_struct_L1_Event_ Event

OpenComRTOS-Suite 1.4.3.3 Manual

162 Data Structure Documentation

• struct _union_Hubs::_struct_L1_Semaphore_ Semaphore
• struct _union_Hubs::_struct_L1_Resource_ Resource
• struct _union_Hubs::_struct_L1_PacketPool_ PacketPool

19.6.1 Field Documentation

19.6.1.1 struct _union_Hubs::_struct_L1_Event_ Event

19.6.1.2 struct _union_Hubs::_struct_L1_Fifo_ Fifo

19.6.1.3 struct _union_Hubs::_struct_L1_PacketPool_ PacketPool

19.6.1.4 struct _union_Hubs::_struct_L1_Resource_ Resource

19.6.1.5 struct _union_Hubs::_struct_L1_Semaphore_ Semaphore

The documentation for this union was generated from the following file:

• include/OpenSystemInspector/OpenSystemInspectorClient.h

19.7 hubInfoStruct Struct Reference

#include <OpenSystemInspectorClient.h>

Data Fields

• L1_ServiceType type
• Hubs hub

19.7.1 Detailed Description

Structure for saving information about the requested hub

19.7.2 Field Documentation

19.7.2.1 Hubs hub

19.7.2.2 L1_ServiceType type

The documentation for this struct was generated from the following file:

• include/OpenSystemInspector/OpenSystemInspectorClient.h

19.8 reqType Struct Reference

#include <OpenSystemInspectorClient.h>

OpenComRTOS-Suite 1.4.3.3 Manual

19.9 taskInfoStruct Struct Reference 163

Data Fields

• enum SERVICE req
• L1_HubID id
• L1_UINT16 objId
• L1_BYTE ∗ address

19.8.1 Field Documentation

19.8.1.1 L1_BYTE∗ address

19.8.1.2 L1_HubID id

19.8.1.3 L1_UINT16 objId

19.8.1.4 enum SERVICE req

The documentation for this struct was generated from the following file:

• include/OpenSystemInspector/OpenSystemInspectorClient.h

19.9 taskInfoStruct Struct Reference

#include <OpenSystemInspectorClient.h>

Data Fields

• home bluescreen workspace OpenComRTOS Suite_API Manual downloads osd include OpenSys-
temInspector OpenSystemInspectorClient h home bluescreen workspace OpenComRTOS Suite_API
Manual downloads osd include OpenSystemInspector OpenSystemInspectorClient h unsigned char
priority

• unsigned char state

19.9.1 Detailed Description

Structure for saving information about the requested task

19.9.2 Field Documentation

19.9.2.1 home bluescreen workspace OpenComRTOS Suite_API Manual downloads osd include
OpenSystemInspector OpenSystemInspectorClient h home bluescreen workspace
OpenComRTOS Suite_API Manual downloads osd include OpenSystemInspector
OpenSystemInspectorClient h unsigned char priority

19.9.2.2 unsigned char state

The documentation for this struct was generated from the following file:

• include/OpenSystemInspector/OpenSystemInspectorClient.h

OpenComRTOS-Suite 1.4.3.3 Manual

164 Data Structure Documentation

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 20

File Documentation

20.1 include/OpenSystemInspector/OpenSystemInspectorClient.h File
Reference

#include <L1_types.h>

#include "socketconnection.h"

#include "OpenSystemInspectorServer.h"

#include <stdlib.h>

Data Structures

• struct taskInfoStruct
• union _union_Hubs
• struct _union_Hubs::_struct_L1_Fifo_
• struct _union_Hubs::_struct_L1_Event_
• struct _union_Hubs::_struct_L1_Semaphore_
• struct _union_Hubs::_struct_L1_Resource_
• struct _union_Hubs::_struct_L1_PacketPool_
• struct hubInfoStruct
• struct reqType

Defines

• #define getTaskById(OSIPort, TaskID, TaskStruct) sendPacketToServer((L1_HubID)(OSIPort),GetTaskByID,GetTaskByID_-
Return,(id_type)(TaskID),(taskInfoStruct∗)(TaskStruct))

• #define getHubById(OSIPort, HubID, HubStruct) sendPacketToServer((L1_HubID)(OSIPort),GetHubByID,GetHubByID_-
Return,(id_type)(HubID),(hubInfoStruct∗)(HubStruct))

• #define getTCB(OSIPort, TaskID) sendPacketToServer((L1_HubID)(OSIPort),GetTCB,GetTCB_-
Return,(id_type)(TaskID),NULL)

• #define getLocalHub(OSIPort, HubID) sendPacketToServer((L1_HubID)(OSIPort),GetLocalHub,GetLocalHub_-
Return,(id_type)(HubID),NULL)

• #define getPreallocatedPacket(OSIPort, TaskID) sendPacketToServer((L1_HubID)(OSIPort),GetPreallocatedPacket,GetPreallocatedPacket_-
Return,(id_type)(TaskID),NULL)

166 File Documentation

• #define getOSIVersion(OSIPort, version) sendPacketToServer((L1_HubID)(OSIPort),GetOSIVersion,GetOSIVersion_-
Return,0,(L1_UINT32∗)(version));

• #define getPPSize(OSIPort, HubID, size) sendPacketToServer((L1_HubID)(OSIPort),GetPacketPoolSize,GetPacketPoolSize_-
Return,0,(L1_UINT32∗)(size));

• #define osiLock(Tld) L1_LockResource_W(Tld+2);
• #define osiUnlock(Tld) L1_UnlockResource_W(Tld+2);

Typedefs

• typedef union _union_Hubs Hubs

Functions

• void ∗ sendPacketToServer (L1_HubID OSIPort, enum SERVICE service, enum SERVICE ser-
viceRet, id_type id, void ∗structPtr)

• L1_Status stopTasks (L1_HubID OSIPort, id_type id)
• L1_Status startTasks (L1_HubID OSIPort, id_type id)
• int getReadyList (L1_HubID OSIPort, id_type ∗readyList)
• int peek (L1_HubID OSIPort, L1_BYTE ∗address, L1_UINT16 length, L1_BYTE ∗result)
• L1_Status poke (L1_HubID OSIPort, L1_BYTE ∗address, L1_UINT16 length, L1_BYTE ∗data)
• void OSIClient_ISR (L1_HubID OSIClientPort)
• void OSIClient_entrypoint (osiSocketConnection ∗currentConnection)

20.1.1 Define Documentation

20.1.1.1 #define getHubById(OSIPort, HubID, HubStruct) sendPacketToServer((L1_-
HubID)(OSIPort),GetHubByID,GetHubByID_Return,(id_-
type)(HubID),(hubInfoStruct∗)(HubStruct))

Function for getting structure with information about current state of hub

Parameters
OSIPort - an ID of OSI Server entity
HubID - Local Hub ID information of interest hub

HubStruct - Pointer to a structure which is at the output will contain information about the requested
hub

Returns

If information getting corrected returned RC_OK, otherwise RC_FAIL

OpenComRTOS-Suite 1.4.3.3 Manual

20.1 include/OpenSystemInspector/OpenSystemInspectorClient.h File Reference 167

20.1.1.2 #define getLocalHub(OSIPort, HubID) sendPacketToServer((L1_-
HubID)(OSIPort),GetLocalHub,GetLocalHub_Return,(id_type)(HubID),NULL)

20.1.1.3 #define getOSIVersion(OSIPort, version) sendPacketToServer((L1_-
HubID)(OSIPort),GetOSIVersion,GetOSIVersion_Return,0,(L1_UINT32∗)(version));

20.1.1.4 #define getPPSize(OSIPort, HubID, size) sendPacketToServer((L1_-
HubID)(OSIPort),GetPacketPoolSize,GetPacketPoolSize_Return,0,(L1_UINT32∗)(size));

20.1.1.5 #define getPreallocatedPacket(OSIPort, TaskID) sendPacketToServer((L1_-
HubID)(OSIPort),GetPreallocatedPacket,GetPreallocatedPacket_Return,(id_-
type)(TaskID),NULL)

20.1.1.6 #define getTaskById(OSIPort, TaskID, TaskStruct
) sendPacketToServer((L1_HubID)(OSIPort),GetTaskByID,GetTaskByID_Return,(id_-
type)(TaskID),(taskInfoStruct∗)(TaskStruct))

Function for getting structure with information about current state of task

Parameters
OSIPort - an ID of OSI Server entity
TaskID - Local task ID information of interest task

TaskStruct - Pointer to a structure which is at the output will contain information about the requested
task

Returns

If information getting corrected returned RC_OK, otherwise RC_FAIL

20.1.1.7 #define getTCB(OSIPort, TaskID) sendPacketToServer((L1_-
HubID)(OSIPort),GetTCB,GetTCB_Return,(id_type)(TaskID),NULL)

20.1.1.8 #define osiLock(Tld) L1_LockResource_W(Tld+2);

20.1.1.9 #define osiUnlock(Tld) L1_UnlockResource_W(Tld+2);

20.1.2 Typedef Documentation

20.1.2.1 typedef union _union_Hubs Hubs

20.1.3 Function Documentation

20.1.3.1 int getReadyList (L1_HubID OSIPort, id_type ∗ readyList)

Function for getting Ready List information

Parameters
OSIPort - an ID of OSI Server entity

readyList - pointer on output array where ID’s will be placed

OpenComRTOS-Suite 1.4.3.3 Manual

168 File Documentation

Returns

If task stopped successfully returned RC_OK, otherwise RC_FAIL

20.1.3.2 void OSIClient_entrypoint (osiSocketConnection ∗ currentConnection)

20.1.3.3 void OSIClient_ISR (L1_HubID OSIClientPort)

20.1.3.4 int peek (L1_HubID OSIPort, L1_BYTE ∗ address, L1_UINT16 length, L1_BYTE ∗
result)

Function for reading data from given address with given length

Parameters
OSIPort - an ID of OSI Server entity
address - pointer on memory address from where data will be read

length - number of byes for reading
result - pointer on data where will be placed read symbols

Returns

If data was read successfully returned amount of copied bytes, otherwise return -1

20.1.3.5 L1_Status poke (L1_HubID OSIPort, L1_BYTE ∗ address, L1_UINT16 length,
L1_BYTE ∗ data)

Function for writting data to given address with given length

Parameters
OSIPort - an ID of OSI Server entity
address - pointer on memory address where data will be writed

length - number of byes for writting
data - pointer on data which will be copied

Returns

If data was wrote successfully returned RC_OK, otherwise - RC_FAIL

20.1.3.6 void∗ sendPacketToServer (L1_HubID OSIPort, enum SERVICE service, enum
SERVICE serviceRet, id_type id, void ∗ structPtr)

20.1.3.7 L1_Status startTasks (L1_HubID OSIPort, id_type id)

Function for starting tasks by local id

Parameters
OSIPort - an ID of OSI Server entity

id - Local task ID

OpenComRTOS-Suite 1.4.3.3 Manual

20.2 include/OpenSystemInspector/OpenSystemInspectorServer.h File Reference 169

Returns

If task started successfully returned RC_OK, otherwise RC_FAIL

20.1.3.8 L1_Status stopTasks (L1_HubID OSIPort, id_type id)

Function for stopping tasks by local id

Parameters
OSIPort - an ID of OSI Server entity

id - Local task ID

Returns

If task stopped successfully returned RC_OK, otherwise RC_FAIL

20.2 include/OpenSystemInspector/OpenSystemInspectorServer.h File
Reference

#include "OpenSystemInspectorService.h"

Enumerations

• enum SERVICE {

GetReadyList = 1, RunAllTasks, StopAllTasks, GetTaskByID,

GetHubByID, Peek, Poke, GetTCB,

GetLocalHub, GetPreallocatedPacket, GetOSIVersion, ShowHexTCB,

ShowHexLocalHub, GetPacketPoolSize, GetHubByID_Return, GetTaskByID_Return,

GetReadyList_Transmit, GetReadyList_Return, Peek_Return, Poke_Return,

GetLocalHub_Return, GetTCB_Return, GetPreallocatedPacket_Return, GetOSIVersion_Return,

GetPacketPoolSize_Return }

Functions

• void sendTaskInfo (L1_Packet ∗Packet, id_type id)
• void sendHubInfo (L1_Packet ∗Packet, id_type id)
• void returnReadyList (L1_HubID OSIPort, L1_Packet ∗Packet)
• void OSIEntryPoint (L1_HubID OSIServerPort)

20.2.1 Enumeration Type Documentation

20.2.1.1 enum SERVICE

Enumerator:

GetReadyList
RunAllTasks

OpenComRTOS-Suite 1.4.3.3 Manual

170 File Documentation

StopAllTasks

GetTaskByID

GetHubByID

Peek

Poke

GetTCB

GetLocalHub

GetPreallocatedPacket

GetOSIVersion

ShowHexTCB

ShowHexLocalHub

GetPacketPoolSize

GetHubByID_Return

GetTaskByID_Return

GetReadyList_Transmit

GetReadyList_Return

Peek_Return

Poke_Return

GetLocalHub_Return

GetTCB_Return

GetPreallocatedPacket_Return

GetOSIVersion_Return

GetPacketPoolSize_Return

20.2.2 Function Documentation

20.2.2.1 void OSIEntryPoint (L1_HubID OSIServerPort)

20.2.2.2 void returnReadyList (L1_HubID OSIPort, L1_Packet ∗ Packet)

20.2.2.3 void sendHubInfo (L1_Packet ∗ Packet, id_type id)

20.2.2.4 void sendTaskInfo (L1_Packet ∗ Packet, id_type id)

comment

20.3 include/OpenSystemInspector/OpenSystemInspectorService.h File
Reference

Defines

• #define OSI_VERSION 0x01000303

OpenComRTOS-Suite 1.4.3.3 Manual

20.3 include/OpenSystemInspector/OpenSystemInspectorService.h File Reference 171

Typedefs

• typedef L1_BYTE id_type

20.3.1 Define Documentation

20.3.1.1 #define OSI_VERSION 0x01000303

The L1_UINT32 value of is formatted the following way:

• MSByte: Major Version of the Kernel

• 23--16: Minor Version

• 15--8 : Release status:

– 0: Alpha

– 1: Beta

– 2: Release Candidate

– 3: Public Release

• LSByte: Patch-level

This number is loosly associated with the OpenVE version number.

20.3.2 Typedef Documentation

20.3.2.1 typedef L1_BYTE id_type

OpenComRTOS-Suite 1.4.3.3 Manual

172 File Documentation

OpenComRTOS-Suite 1.4.3.3 Manual

Part VIII

Save Virtual Machine for C

Chapter 21

Safe Virtual Machine for C (SVM)

The Safe Virtual Machine for C (SVM) is a small (∼3kB code on an ARM-Cortex-M3) virtual machine
that is able to interpret ARM-Thumb-1 instruction set binaries. The SVM consists of two parts:

1. SVM Host Server

2. SVM-Platform

21.1 Introduction

21.2 SVM Host Server

This is the actual virtual machine that can be used within an application. Each virtual machine can execute
one OpenComRTOS Task. You can have multiple SVM Host Server instances in your system.

21.2.1 Properties

The user can modify the following properties of the SVM Host Service Component:

• name: The name of the component, this must be unique in the whole system. The default node name
is ‘svm’.

• bufferSize: The size of the program buffer in 32bit words. It has a default value of 5000 32bit words,
but the size depends on the concrete application.

• VM_Task_StackSize: The amount of stack space allocated for the virtual machine task. The default
value is 512, which is a safe bet, but it can be reduced depending on target CPU the SVM is executing
on.

• SVM_Supervisor_StackSize: The amount of stack space allocated for the supervisor task. The de-
fault value is 512, which is a safe bet, but it can be reduced depending on target CPU the SVM is
executing on.

• SVMCeilingPriority: The priority of that the Resource-Hub embedded in the SVM can at most boost
its owner task to in case of a priority inheritance operation taking place.

176 Safe Virtual Machine for C (SVM)

21.3 SVM-Platform

This is a virtual node on which the tasks get mapped that should be compiled for the SVM Host Server.
The output of the compilation is a bin-file in the Output/bin folder.

21.3.1 Properties

The SVM-Platform has used and unused properties. The unused properties will be removed in a future
version, once the build system has been adjusted to work without them. The used properties are:

• name: The name of the node that represents the SVM-Platform. This is used to assign nodes to it.

• compiler: The compiler to use, by default the SVM-Platform uses the compiler arm-none-eabi-gcc.
If your compiler is not in the executable search path you can set the correct path to it here.

• compilerOptions: The task that gets compiled using the SVM-Platform can be compiled with the
following compilation options:

– O0: No optimisations

– O3: Speed optimisations

– Os: Size optimisations, this is the default value.

The unused properties are:

• rxPacketPoolSize: This defines how many L1_Packets are present in the Node global RX packet
pool. This pool is used by the link drivers to acquire local packets for packets they received over
their link.

• kernelPacketPoolSize: Number of L1_Packets in the Kernel packet pool. This pool is used by the
kernel to send messages to other nodes. Typical examples where this used is for implementing
priority inheritance for non local tasks.

• traceBufferSize: the number of events the node can remember when run in tracing mode (dbu-
gopt==1 or dbugopt==2).

• debugopt: This defines the tracing mode in which the node is run, the following modes are available:

– 0: No trace information to be generated

– 1: Limited tracing

– 2: Full tracing

21.4 Tutorial

This tutorial explains the steps to run one Task of the Semaphore_W_SP example inside an instance of the
SVN.

1. Start OpenVE

2. Open the project located at:

(examples\win32\Semaphores\Semaphore_W_SP)

3. Save the project as a new project called Semaphore_W_SVM. To do this follow these steps:

OpenComRTOS-Suite 1.4.3.3 Manual

21.4 Tutorial 177

Figure 21.1: The ‘Save Project As’ Dialogue

Figure 21.2: Extended Topology with SVM-Platform Node

(a) Go to the main menu: File -> ‘Save Project As’. See Figure 21.1 for an illustration of the the
‘Save Project As’ Dialogue.

(b) In the text-field labeled ‘Name:’ insert the new name: ‘Semaphore_W_SVM’.

(c) Press on the button labeled ‘Finish’. This will copy the current project at the new location; close
the current project; and open the newly created project. Figure 21.1 show the ‘Save Project As’
Dialogue.

4. Open to the topology diagram and add a node of type ‘svm’ to the topology diagram. The diagram
should then look similar to the one shown in Figure 21.2.

5. Add an SvmComponent to the Application diagram, with the following properties:

• node: Win32Node1

• name: SvmHostService

• bufferSize: 5000 (means 5000 32Bit words program buffer)

• SVMCeilingPriority: 32

• VM_Task_StackSize: 512

• SVM_Supervisor_StackSize: 512 Afterwards the application diagram should look similar to
the one shown in Figure 21.3. Now the project contains an SVM-Platform and an SVM-
Component. What is still missing are the following things:

• A Task that gets run in the SVM-Component

OpenComRTOS-Suite 1.4.3.3 Manual

178 Safe Virtual Machine for C (SVM)

Figure 21.3: Application Diagram with SVM-Component

• A Task that loads the binary image of the Task that gets run in the SVM-Component into the
SVM-Component and then starts the SVM-Component.

6. Map Task2 onto the previously created SVM-Platform node. To do this follow these steps:

(a) Double click on the icon representing ‘Task2’, this will open the properties menu.

(b) Change the property ‘node’ from ‘Win32Node1’ to ‘svm’ This causes the build system to com-
pile the task for the SVM, the resulting binary image is named according to the following nam-
ing scheme: ${Task Name}.bin. Thus in our example here the file will be called ‘Task2.bin’.

7. Add a new Task to the Application Diagram, setting the following properties:

• node: Win32Node1

• name: LoaderTask

• priority: 128

• arguments: NULL

• status: L1_Started

• stackSize: 512

• entryPoint: Create a new entry-point, by clicking on the plus button, call this new entry-point:
‘LoaderTaskEP’. The application diagram should now look similar to the one shown in Figure
21.4.

8. The newly created LoaderTask must now be filled with the corresponding code to load the binary
image of Task2 (contained in the file Task2.bin), and then start the SVM-Execution:

(a) Open the source code that represents the Task Entry Point of the LoaderTask, by opening the
properties menu of task (right click on the icon that represents the Task) and then clicking on
‘Go to LoaderTaskEP’. This will open the source code representing the LoaderTask.

OpenComRTOS-Suite 1.4.3.3 Manual

21.4 Tutorial 179

Figure 21.4: Application Diagram with Loader Task

(b) Include the file SvmService/SvmClient.h to ensure that the compiler finds the functions to
control the SVM-Component.

(c) Delete the while(1){} loop

(d) Add the following lines into the body of the loader task:

• Svm_loadTaskFromFile(SvmHostService, StdioHostServer1, "Task2.bin"); This instructs
the SVM-Component, called SvmHostService, to open the file ‘Task2.bin’ using the Stdio
Host Server called StdioHostServer1. Then it loads the contents into the its program mem-
ory, before closing the file again.

• Svm_startTask(SvmHostService); Instructs the SVM-Component, called SvmHostService,
to start executing the previously loaded task.

(e) The file LoaderTaskEP.c should look now as follows:

#include <L1_api.h>
#include <L1_nodes_data.h>

#include<SvmService/SvmClient.h>

void LoaderTaskEP(L1_TaskArguments Arguments)

Svm_loadTaskFromFile(SvmHostService, StdioHostServer1,
"Task2.bin");

Svm_startTask(SvmHostService);

9. Now you can build the program and execute it by pressing the run-button in the toolbar.

OpenComRTOS-Suite 1.4.3.3 Manual

180 Safe Virtual Machine for C (SVM)

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 22

Data Structure Index

22.1 Data Structures

Here are the data structures with brief descriptions:

Svm_errorDescription . 185
Svm_taskArguments . 185
Svm_vmTaskArguments . 186
SvmHsSync . 187

182 Data Structure Index

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 23

File Index

23.1 File List

Here is a list of all files with brief descriptions:

include/SvmService/SvmClient.h . 189
include/SvmService/SvmServer.h . 191
include/SvmService/SvmService.h . 194

184 File Index

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 24

Data Structure Documentation

24.1 Svm_errorDescription Struct Reference

#include <SvmServer.h>

Data Fields

• SvmErrorCode errorCode

24.1.1 Field Documentation

24.1.1.1 SvmErrorCode errorCode

The error code.

The documentation for this struct was generated from the following file:

• include/SvmService/SvmServer.h

24.2 Svm_taskArguments Struct Reference

#include <SvmServer.h>

Data Fields

• L1_HubID SvmServerInputPort
• L1_HubID SvmServerOutputPort
• SvmHsSync ∗ vmState
• L1_Packet clientInterfacePacket
• L1_Packet vmInterfacePacket
• L1_Packet ∗ nextClientPacket
• L1_UINT32 bytesReceived

186 Data Structure Documentation

24.2.1 Field Documentation

24.2.1.1 L1_UINT32 bytesReceived

Number of bytes that were received already.

24.2.1.2 L1_Packet clientInterfacePacket

This L1_Packet is used to asynchronously wait for input from the SvmClient(s).

24.2.1.3 L1_Packet∗ nextClientPacket

This is used to return a client packet that was received while waiting for a Packet from the VM-Task.

24.2.1.4 L1_HubID SvmServerInputPort

24.2.1.5 L1_HubID SvmServerOutputPort

server output port

24.2.1.6 L1_Packet vmInterfacePacket

This L1_Packet gets used to asynchronously wait for input from the VM-Task.

24.2.1.7 SvmHsSync∗ vmState

This is a structure shared between the VM and the SVM-HS Tasks.

The documentation for this struct was generated from the following file:

• include/SvmService/SvmServer.h

24.3 Svm_vmTaskArguments Struct Reference

#include <SvmServer.h>

Data Fields

• SvmHsSync ∗ vmState

24.3.1 Field Documentation

24.3.1.1 SvmHsSync∗ vmState

This is a structure shared between the VM and the SVM-HS Tasks.

The documentation for this struct was generated from the following file:

• include/SvmService/SvmServer.h

OpenComRTOS-Suite 1.4.3.3 Manual

24.4 SvmHsSync Struct Reference 187

24.4 SvmHsSync Struct Reference

#include <SvmServer.h>

Data Fields

• SvmRequest request
• SvmState state
• L1_HubID requestIssued
• L1_HubID stateChanged
• L1_UINT32 ∗ programBuffer
• L1_UINT32 programBufferSize
• L1_UINT32 registers [20]
• SvmErrorCode errorCode

24.4.1 Detailed Description

This structure is used by the SVM-HS to control and synchronise with the Virtual-Machine Task.

24.4.2 Field Documentation

24.4.2.1 SvmErrorCode errorCode

Contains the last error code the VM generated.

24.4.2.2 L1_UINT32∗ programBuffer

program memory

24.4.2.3 L1_UINT32 programBufferSize

Number of 32bit words the program memory can store.

24.4.2.4 L1_UINT32 registers[20]

Represents the Register set of the emulated CPU.

24.4.2.5 SvmRequest request

Holds the request for the VM.

Warning

Only the SVM-HS is allowed to write to this variable.

OpenComRTOS-Suite 1.4.3.3 Manual

188 Data Structure Documentation

24.4.2.6 L1_HubID requestIssued

This is the HubID of the Event-Hub which is used by the SVM-HS to signal to the VM-Task that a new
request has been sent, currently only used for the request SVM_START_VM.

24.4.2.7 SvmState state

Holds the current state of the VM.

Warning

Only the VM is allowed to modify this varialbe.

24.4.2.8 L1_HubID stateChanged

This is the HubID of the Event-Hub which is used by the VM-Task to signal to the SVM-HS that its state
has changed.

The documentation for this struct was generated from the following file:

• include/SvmService/SvmServer.h

OpenComRTOS-Suite 1.4.3.3 Manual

Chapter 25

File Documentation

25.1 include/SvmService/SvmClient.h File Reference

#include <L1_api.h>

#include <kernel/L1_memcpy.h>

#include <driver/linkcommunication.h>

#include <SvmService/SvmServer.h>

Functions

• L1_Status Svm_loadTask (L1_HubID vsp, L1_BYTE ∗program, L1_UINT32 length)
• L1_Status Svm_loadTaskFromFile (L1_HubID vsp, L1_HubID shsServer, char ∗filename)
• L1_Status Svm_startTask (L1_HubID vsp)
• L1_Status Svm_stopTask (L1_HubID vsp)
• L1_Status Svm_clearMemory (L1_HubID vsp)
• L1_Status Svm_getErrorInfo (L1_HubID vsp, Svm_errorDescription ∗info)
• L1_Status Svm_getState (L1_HubID vsp, SvmState ∗state)

25.1.1 Function Documentation

25.1.1.1 L1_Status Svm_clearMemory (L1_HubID vsp)

Clear program memory of the VM. This is synonim to ’unload task’.

Parameters
vsp The ID of the Svm-Server which should process this request.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

190 File Documentation

25.1.1.2 L1_Status Svm_getErrorInfo (L1_HubID vsp, Svm_errorDescription ∗ info)

Getting information about last error inside the virtual program.

Parameters
vsp The ID of the Svm-Server which should process this request.
info Pointer to an Svm_errorDescription structure, which will be updated with the description of

the error.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

25.1.1.3 L1_Status Svm_getState (L1_HubID vsp, SvmState ∗ state)

Retrieves the current state of the SVM.

Parameters
vsp The ID of the Svm-Server which should process this request.

state Pointer to a variable of type SvmState, after this call returns successfully the variable will
contain the state of the SVM. stored

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

25.1.1.4 L1_Status Svm_loadTask (L1_HubID vsp, L1_BYTE ∗ program, L1_UINT32 length)

Load binary image of task to the memory of VM.

Parameters
vsp is the ID of the SvmInputPort of the VSP host server

program A character array holding the image of the Task to be loaded.
length Size of the Image in bytes.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

OpenComRTOS-Suite 1.4.3.3 Manual

25.2 include/SvmService/SvmServer.h File Reference 191

25.1.1.5 L1_Status Svm_loadTaskFromFile (L1_HubID vsp, L1_HubID shsServer, char ∗
filename)

Loads a binary image from a file using a Stdio-Host-Server.

Parameters
vsp The ID of the Svm-Server which should executed the image.

shsServer The ID of the Stdio-Host-Server from which to load the image.
filename The name of the file that contains the image.

25.1.1.6 L1_Status Svm_startTask (L1_HubID vsp)

Starts already loaded task.

Parameters
vsp The ID of the Svm-Server which should process this request.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed. Task was not loaded yet.

25.1.1.7 L1_Status Svm_stopTask (L1_HubID vsp)

Stops running task.

Parameters
vsp The ID of the Svm-Server which should process this request.

Returns

L1_Status

• RC_OK: The request was successful

• RC_FAIL: The request failed.

25.2 include/SvmService/SvmServer.h File Reference

#include <L1_types.h>

Data Structures

• struct Svm_errorDescription
• struct SvmHsSync
• struct Svm_taskArguments
• struct Svm_vmTaskArguments

OpenComRTOS-Suite 1.4.3.3 Manual

192 File Documentation

Defines

• #define SVM_COMMAND_NTOH(cmd) ntoh32(cmd)
• #define SVM_COMMAND_HTON(cmd) hton32(cmd)
• #define SVM_COMMAND_LENGTH 4
• #define SVM_STATE_LENGTH 4

Typedefs

• typedef L1_UINT32 SVM_COMMAND_TYPE
• typedef L1_UINT32 SVM_STATE_TYPE
• typedef enum SVM_REQUEST SvmRequest
• typedef enum SVM_STATE SvmState

Enumerations

• enum SvmErrorCode { SVM_NO_ERROR = 1, SVM_ERROR_PROCESS_SWI, SVM_ERROR_-
UNKNOWN_INSTRUCTION }

• enum SVM_PROTOCOL {

SVM_LOAD_TASK, SVM_LOAD_TASK_SESSION_START, SVM_LOAD_TASK_SESSION_-
STOP, SVM_START_TASK,

SVM_STOP_TASK, SVM_CLEAR_MEMORY, SVM_GET_ERROR_INFO, SVM_GET_STATE
}

• enum SVM_REQUEST { SVM_NO_REQUEST = 1, SVM_START_VM, SVM_STOP_VM, SVM_-
SUSUPEND_VM }

• enum SVM_STATE { SVM_VM_STOPPED = 1, SVM_VM_RUNNING, SVM_VM_SUSPENDED,
SVM_VM_ERROR }

25.2.1 Define Documentation

25.2.1.1 #define SVM_COMMAND_HTON(cmd) hton32(cmd)

25.2.1.2 #define SVM_COMMAND_LENGTH 4

25.2.1.3 #define SVM_COMMAND_NTOH(cmd) ntoh32(cmd)

25.2.1.4 #define SVM_STATE_LENGTH 4

25.2.2 Typedef Documentation

25.2.2.1 typedef L1_UINT32 SVM_COMMAND_TYPE

25.2.2.2 typedef L1_UINT32 SVM_STATE_TYPE

25.2.2.3 typedef enum SVM_REQUEST SvmRequest

These are the requests that the SVM-HostServer Task can send to the Virtual-Machine Task.

OpenComRTOS-Suite 1.4.3.3 Manual

25.2 include/SvmService/SvmServer.h File Reference 193

25.2.2.4 typedef enum SVM_STATE SvmState

These are the states the Virtual-Machine Task can be in.

25.2.3 Enumeration Type Documentation

25.2.3.1 enum SVM_PROTOCOL

Enumerator:

SVM_LOAD_TASK loading program to the server

SVM_LOAD_TASK_SESSION_START loading program to the server(session start)

SVM_LOAD_TASK_SESSION_STOP loading program to the server(session stop)

SVM_START_TASK start virtual task

SVM_STOP_TASK stop virtual task

SVM_CLEAR_MEMORY clear program memory of the VM(unload task)

SVM_GET_ERROR_INFO get info about error in the virtual program

SVM_GET_STATE get current state of the VM

25.2.3.2 enum SVM_REQUEST

These are the requests that the SVM-HostServer Task can send to the Virtual-Machine Task.

Enumerator:

SVM_NO_REQUEST Indicates that there is currently no requst being sent.

SVM_START_VM Indicates that the Interpreter should be started.

SVM_STOP_VM Indicates that the Interpreter should bes stopped.

SVM_SUSUPEND_VM Indicates that the Interpreter should suspend the Task it executes.

25.2.3.3 enum SVM_STATE

These are the states the Virtual-Machine Task can be in.

Enumerator:

SVM_VM_STOPPED The VM is stopped, this is the initial state. The VM changes into this state
after receiving the SVM_STOP_VM request.

SVM_VM_RUNNING The VM is running, the VM changes into this state after receiving the SVM_-
START_VM request, and a packet in its input port.

SVM_VM_SUSPENDED The VM has suspended the Task it was executing. The VM changes into
this state after receiving the SVM_SUSPEND_VM request.

SVM_VM_ERROR The VM has detected an error during its execution.

OpenComRTOS-Suite 1.4.3.3 Manual

194 File Documentation

25.2.3.4 enum SvmErrorCode

Structure that stores the error description. It passed inside an L1_Packet from the VM-Task to the Supervisor-
Task.

Enumerator:

SVM_NO_ERROR
SVM_ERROR_PROCESS_SWI
SVM_ERROR_UNKNOWN_INSTRUCTION

25.3 include/SvmService/SvmService.h File Reference

#include <SvmService/SvmClient.h>

Defines

• #define SVML_HOST_SERVICE_HEADER
• #define SVMHS_VERSION 0x00020301

25.3.1 Define Documentation

25.3.1.1 #define SVMHS_VERSION 0x00020301

The L1_UINT32 value of is formatted the following way:

• MSByte: Major Version of the Kernel

• 23--16: Minor Version

• 15--8 : Release status:

– 0: Alpha

– 1: Beta

– 2: Release Candidate

– 3: Public Release

• LSByte: Patch-level

25.3.1.2 #define SVML_HOST_SERVICE_HEADER

OpenComRTOS-Suite 1.4.3.3 Manual

Part IX

Appendix

Bibliography

[1] Mingw minimalist gnu for windows. http://www.mingw.org/. 33

[2] Sourcery g++ lite 2009q1-161 for arm eabi. http://www.codesourcery.com/sgpp/lite/
arm/portal/release830. 35

[3] Cmake — cross platform make. http://www.cmake.org/cmake/resources/software.
html. 35

http://www.mingw.org/
http://www.codesourcery.com/sgpp/lite/arm/portal/release830
http://www.codesourcery.com/sgpp/lite/arm/portal/release830
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html

198 BIBLIOGRAPHY

OpenComRTOS-Suite 1.4.3.3 Manual

Glossary

Ceiling Priority An attribute to a resource that defines the maximum priority it may boost a Task to in
case of a priority inheritance operation. 21, 22

Cluster An ensemble of Nodes. 5

Context switch The process of swapping Task-specific information usually associated with CPU registers
during Task scheduling.. 25

Event A (binary) Event Entity to synchronise a single task with another task or a specific hardware pe-
ripheral through it’s driver task. 10

FIFO queue An L1 Entity used to pass fixed size data in a buffered way between tasks. 10

Hub The generic L1 entity of OpenComRTOS used to implement all L1 entities.. 5–7, 10, 12, 15, 17, 21

Inter-node Link Point to point communication system between two nodes. It can be virtualised when the
communication medium is shared.. 7

ISR Interrupt Service Routine. 9, 12, 15, 23, 24, 26

Memory Pool An L1 Entity providing exclusive ownership to memory blocks with a predefined size. 10

Node A processing device in a network containing at least a CPU and its local memory.. 3, 5–8, 12, 15,
17, 19

Platform Hardware system with CPU, specific peripherals and development support.. 15

Port An L1 Entity used to synchronise and communicate between Tasks using Packets. 10

Priority A task attribute used by the scheduler to activate the tasks in the ready list in order of their
respective priority. 19–23, 25, 26, 29

Priority inheritance A term used in the context of the priotity based scheduling to reduce the blocking
time by tasks that have taken ownership of a resource entity. 21

Priority Inversion Happens when a high priority Task has to wait for a low priority Task to release a
resoruce. In fact the priority of the high priority task gets lowered to the priority of the low priority
Task which holds the resource. Priority Inheritance is used to overcome this problem. 22

Resource An L1 Entity used to provide exclusive access to a logical resource.. 10

Round Robin scheduling Non-pre-emptive scheduling following a policy of “first come – first served”.
Attention: often Round Robin means pre-emptive time slicing scheduling – this notion is not used in
this document. 25

200 Glossary

Semaphore An L1 Entity used to synchronize tasks based upon counting Event to sychronise between
multiple tasks or hardware peripherals through it’s driver task. 10

Task Active RTOS Entity: a function with its private workspace. 3, 5–10, 12, 15, 17, 19–26, 29

OpenComRTOS-Suite 1.4.3.3 Manual

Acronyms

RTOS Real-time Operating System. 3, 5, 7, 12

202 Acronyms

OpenComRTOS-Suite 1.4.3.3 Manual

Index

_union_Hubs, 161
Event, 162
Fifo, 162
PacketPool, 162
Resource, 162
Semaphore, 162

_union_Hubs::_struct_L1_Event_, 159
isSet, 159

_union_Hubs::_struct_L1_Fifo_, 159
count, 160
head, 160
size, 160
tail, 160

_union_Hubs::_struct_L1_PacketPool_, 160
size, 160

_union_Hubs::_struct_L1_Resource_, 160
boostedPrioriry, 161
ceilingPrioriry, 161
locked, 161
taskID, 161

_union_Hubs::_struct_L1_Semaphore_, 161
count, 161

address
reqType, 163

b
GhsColour, 142

Base Variable types, 110
boostedPrioriry

_union_Hubs::_struct_L1_Resource_, 161
bottom

GhsRect, 143
bytesReceived

Svm_taskArguments, 186

ceilingPrioriry
_union_Hubs::_struct_L1_Resource_, 161

clientInterfacePacket
Svm_taskArguments, 186

colour
GhsBrush, 141
GhsPen, 142

count
_union_Hubs::_struct_L1_Fifo_, 160

_union_Hubs::_struct_L1_Semaphore_, 161

DumpTraceBuffer_W
TraceHostClient.h, 133

errorCode
Svm_errorDescription, 185
SvmHsSync, 187

Event
_union_Hubs, 162

Event Hub Operations, 83

Fifo
_union_Hubs, 162

FIFO Hub Operations, 97

g
GhsColour, 142

GetHubByID
OpenSystemInspectorServer.h, 170

getHubById
OpenSystemInspectorClient.h, 166

GetHubByID_Return
OpenSystemInspectorServer.h, 170

GetLocalHub
OpenSystemInspectorServer.h, 170

getLocalHub
OpenSystemInspectorClient.h, 166

GetLocalHub_Return
OpenSystemInspectorServer.h, 170

GetOSIVersion
OpenSystemInspectorServer.h, 170

getOSIVersion
OpenSystemInspectorClient.h, 167

GetOSIVersion_Return
OpenSystemInspectorServer.h, 170

GetPacketPoolSize
OpenSystemInspectorServer.h, 170

GetPacketPoolSize_Return
OpenSystemInspectorServer.h, 170

getPPSize
OpenSystemInspectorClient.h, 167

GetPreallocatedPacket
OpenSystemInspectorServer.h, 170

getPreallocatedPacket
OpenSystemInspectorClient.h, 167

204 INDEX

GetPreallocatedPacket_Return
OpenSystemInspectorServer.h, 170

GetReadyList
OpenSystemInspectorServer.h, 169

getReadyList
OpenSystemInspectorClient.h, 167

GetReadyList_Return
OpenSystemInspectorServer.h, 170

GetReadyList_Transmit
OpenSystemInspectorServer.h, 170

GetTaskByID
OpenSystemInspectorServer.h, 170

getTaskById
OpenSystemInspectorClient.h, 167

GetTaskByID_Return
OpenSystemInspectorServer.h, 170

GetTCB
OpenSystemInspectorServer.h, 170

getTCB
OpenSystemInspectorClient.h, 167

GetTCB_Return
OpenSystemInspectorServer.h, 170

Ghs_closeSession_W
GraphicalHostClient.h, 146

Ghs_drawCircle_W
GraphicalHostClient.h, 146

Ghs_drawLine_W
GraphicalHostClient.h, 147

Ghs_drawRect_W
GraphicalHostClient.h, 147

Ghs_drawText_W
GraphicalHostClient.h, 147

Ghs_getCanvasSize_W
GraphicalHostClient.h, 148

Ghs_getServerVersion_W
GraphicalHostClient.h, 148

Ghs_openSession_W
GraphicalHostClient.h, 149

Ghs_setBrush_W
GraphicalHostClient.h, 149

Ghs_setCanvasSize_W
GraphicalHostClient.h, 149

Ghs_setPen_W
GraphicalHostClient.h, 150

Ghs_setTextColour_W
GraphicalHostClient.h, 150

GHS_VERSION
GraphicalHostService.h, 151

GhsBrush, 141
colour, 141
style, 141

GhsBrushDiagonal
GhsTypes.h, 145

GhsBrushSolid

GhsTypes.h, 145
GhsBrushStyle

GhsTypes.h, 145
GhsColour, 141

b, 142
g, 142
r, 142

GhsPen, 142
colour, 142
lineWidth, 142
style, 142

GhsPenSolid
GhsTypes.h, 145

GhsPenStyle
GhsTypes.h, 145

GhsRect, 143
bottom, 143
left, 143
right, 143
top, 143

GhsTypes.h
GhsBrushDiagonal, 145
GhsBrushSolid, 145
GhsBrushStyle, 145
GhsPenSolid, 145
GhsPenStyle, 145

GraphicalHostClient.h
Ghs_closeSession_W, 146
Ghs_drawCircle_W, 146
Ghs_drawLine_W, 147
Ghs_drawRect_W, 147
Ghs_drawText_W, 147
Ghs_getCanvasSize_W, 148
Ghs_getServerVersion_W, 148
Ghs_openSession_W, 149
Ghs_setBrush_W, 149
Ghs_setCanvasSize_W, 149
Ghs_setPen_W, 150
Ghs_setTextColour_W, 150

GraphicalHostService.h
GHS_VERSION, 151

head
_union_Hubs::_struct_L1_Fifo_, 160

hub
hubInfoStruct, 162

hubInfoStruct, 162
hub, 162
type, 162

Hubs
OpenSystemInspectorClient.h, 167

id
reqType, 163

OpenComRTOS-Suite 1.4.3.3 Manual

INDEX 205

id_type
OpenSystemInspectorService.h, 171

include/L1_api_apidoc.h, 115
include/L1_types_apidoc.h, 117
include/OpenSystemInspector/OpenSystemInspectorClient.h,

165
include/OpenSystemInspector/OpenSystemInspectorServer.h,

169
include/OpenSystemInspector/OpenSystemInspectorService.h,

170
include/SvmService/SvmClient.h, 189
include/SvmService/SvmServer.h, 191
include/SvmService/SvmService.h, 194
isSet

_union_Hubs::_struct_L1_Event_, 159

L1_CHANGE_PRIORITY
L1_types_apidoc.h, 120

L1_EVENT
L1_types_apidoc.h, 121

L1_FIFO
L1_types_apidoc.h, 121

L1_IOCTL_HUB_OPEN
L1_types_apidoc.h, 120

L1_MEMORYPOOL
L1_types_apidoc.h, 121

L1_PACKETPOOL
L1_types_apidoc.h, 121

L1_PORT
L1_types_apidoc.h, 121

L1_RESOURCE
L1_types_apidoc.h, 121

L1_SEMAPHORE
L1_types_apidoc.h, 121

L1_SERVICE
L1_types_apidoc.h, 121

L1_SID_ANY_PACKET
L1_types_apidoc.h, 120

L1_SID_AWAKE_TASK
L1_types_apidoc.h, 120

L1_SID_CHANGE_PACKET_PRIORITY
L1_types_apidoc.h, 120

L1_SID_IOCTL_HUB
L1_types_apidoc.h, 120

L1_SID_RECEIVE_FROM_HUB
L1_types_apidoc.h, 120

L1_SID_RESUME_TASK
L1_types_apidoc.h, 120

L1_SID_RETURN
L1_types_apidoc.h, 120

L1_SID_SEND_TO_HUB
L1_types_apidoc.h, 120

L1_SID_START_TASK
L1_types_apidoc.h, 120

L1_SID_STOP_TASK
L1_types_apidoc.h, 120

L1_SID_SUSPEND_TASK
L1_types_apidoc.h, 120

L1_SID_WAIT_TASK
L1_types_apidoc.h, 120

L1_types_apidoc.h
L1_CHANGE_PRIORITY, 120
L1_EVENT, 121
L1_FIFO, 121
L1_IOCTL_HUB_OPEN, 120
L1_MEMORYPOOL, 121
L1_PACKETPOOL, 121
L1_PORT, 121
L1_RESOURCE, 121
L1_SEMAPHORE, 121
L1_SERVICE, 121
L1_SID_ANY_PACKET, 120
L1_SID_AWAKE_TASK, 120
L1_SID_CHANGE_PACKET_PRIORITY, 120
L1_SID_IOCTL_HUB, 120
L1_SID_RECEIVE_FROM_HUB, 120
L1_SID_RESUME_TASK, 120
L1_SID_RETURN, 120
L1_SID_SEND_TO_HUB, 120
L1_SID_START_TASK, 120
L1_SID_STOP_TASK, 120
L1_SID_SUSPEND_TASK, 120
L1_SID_WAIT_TASK, 120
RC_FAIL, 121
RC_OK, 121
RC_TO, 121

L1_AllocateMemoryBlock_NW
OCR_MemoryPool_Hub, 105

L1_AllocateMemoryBlock_W
OCR_MemoryPool_Hub, 105

L1_AllocateMemoryBlock_WT
OCR_MemoryPool_Hub, 106

L1_api_apidoc.h
L1_GetVersion, 117
L1_runOpenComRTOS, 117
OCR_VERSION, 116
theServicePacket, 116

L1_BOOL
OCR_BASE_TYPES, 111

L1_BYTE
OCR_BASE_TYPES, 111

L1_BYTE_MAX
OCR_BASE_TYPES, 112

L1_BYTE_MIN
OCR_BASE_TYPES, 112

L1_DeallocateMemoryBlock_W
OCR_MemoryPool_Hub, 107

L1_DequeueFifo_NW

OpenComRTOS-Suite 1.4.3.3 Manual

206 INDEX

OCR_FIFO_Hub, 100
L1_DequeueFifo_W

OCR_FIFO_Hub, 100
L1_DequeueFifo_WT

OCR_FIFO_Hub, 101
L1_EnqueueFifo_NW

OCR_FIFO_Hub, 101
L1_EnqueueFifo_W

OCR_FIFO_Hub, 102
L1_EnqueueFifo_WT

OCR_FIFO_Hub, 102
L1_FALSE

L1_types_apidoc.h, 119
L1_GetPacketFromPort_NW

OCR_Port_Hub, 80
L1_GetPacketFromPort_W

OCR_Port_Hub, 80
L1_GetPacketFromPort_WT

OCR_Port_Hub, 81
L1_GetVersion

L1_api_apidoc.h, 117
L1_GLOBALID_MASK

L1_types_apidoc.h, 119
L1_GLOBALID_SIZE

L1_types_apidoc.h, 119
L1_HubControlType

L1_types_apidoc.h, 120
L1_HubID

L1_types_apidoc.h, 119
L1_INT16

OCR_BASE_TYPES, 111
L1_INT16_MAX

OCR_BASE_TYPES, 112
L1_INT16_MIN

OCR_BASE_TYPES, 112
L1_INT32

OCR_BASE_TYPES, 111
L1_INT32_MAX

OCR_BASE_TYPES, 112
L1_INT32_MIN

OCR_BASE_TYPES, 112
L1_LockResource_NW

OCR_Resource_Hub, 95
L1_LockResource_W

OCR_Resource_Hub, 95
L1_LockResource_WT

OCR_Resource_Hub, 95
L1_PortID

L1_types_apidoc.h, 119
L1_Priority

L1_types_apidoc.h, 119
L1_PutPacketToPort_NW

OCR_Port_Hub, 81
L1_PutPacketToPort_W

OCR_Port_Hub, 82
L1_PutPacketToPort_WT

OCR_Port_Hub, 82
L1_RaiseEvent_NW

OCR_Event_Hub, 85
L1_RaiseEvent_W

OCR_Event_Hub, 86
L1_RaiseEvent_WT

OCR_Event_Hub, 86
L1_ResumeTask_W

OCR_TaskManagement, 108
L1_runOpenComRTOS

L1_api_apidoc.h, 117
L1_ServiceID

L1_types_apidoc.h, 120
L1_ServiceType

L1_types_apidoc.h, 120
L1_SignalSemaphore_NW

OCR_Semaphore_Hub, 90
L1_SignalSemaphore_W

OCR_Semaphore_Hub, 90
L1_SignalSemaphore_WT

OCR_Semaphore_Hub, 91
L1_StartTask_W

OCR_TaskManagement, 108
L1_Status

L1_types_apidoc.h, 121
L1_StopTask_W

OCR_TaskManagement, 108
L1_SuspendTask_W

OCR_TaskManagement, 109
L1_TaskArguments

L1_types_apidoc.h, 119
L1_TaskFunction

L1_types_apidoc.h, 119
L1_TaskID

L1_types_apidoc.h, 119
L1_TestEvent_NW

OCR_Event_Hub, 87
L1_TestEvent_W

OCR_Event_Hub, 87
L1_TestEvent_WT

OCR_Event_Hub, 87
L1_TestSemaphore_NW

OCR_Semaphore_Hub, 91
L1_TestSemaphore_W

OCR_Semaphore_Hub, 92
L1_TestSemaphore_WT

OCR_Semaphore_Hub, 92
L1_Time

OCR_TIMER_TYPES, 113
L1_Time_MAX

OCR_TIMER_TYPES, 113
L1_Time_MIN

OpenComRTOS-Suite 1.4.3.3 Manual

INDEX 207

OCR_TIMER_TYPES, 113
L1_Timeout

OCR_TIMER_TYPES, 113
L1_TRUE

L1_types_apidoc.h, 119
L1_types_apidoc.h

L1_FALSE, 119
L1_GLOBALID_MASK, 119
L1_GLOBALID_SIZE, 119
L1_HubControlType, 120
L1_HubID, 119
L1_PortID, 119
L1_Priority, 119
L1_ServiceID, 120
L1_ServiceType, 120
L1_Status, 121
L1_TaskArguments, 119
L1_TaskFunction, 119
L1_TaskID, 119
L1_TRUE, 119

L1_UINT16
OCR_BASE_TYPES, 111

L1_UINT16_MAX
OCR_BASE_TYPES, 112

L1_UINT16_MIN
OCR_BASE_TYPES, 112

L1_UINT32
OCR_BASE_TYPES, 112

L1_UINT32_MAX
OCR_BASE_TYPES, 113

L1_UINT32_MIN
OCR_BASE_TYPES, 113

L1_UnlockResource_NW
OCR_Resource_Hub, 96

L1_UnlockResource_W
OCR_Resource_Hub, 96

L1_UnlockResource_WT
OCR_Resource_Hub, 97

L1_WaitTask_WT
OCR_TaskManagement, 110

left
GhsRect, 143

lineWidth
GhsPen, 142

locked
_union_Hubs::_struct_L1_Resource_, 161

Memory Pool Hub Operations, 103

nextClientPacket
Svm_taskArguments, 186

objId
reqType, 163

OCR_BASE_TYPES
L1_BOOL, 111
L1_BYTE, 111
L1_BYTE_MAX, 112
L1_BYTE_MIN, 112
L1_INT16, 111
L1_INT16_MAX, 112
L1_INT16_MIN, 112
L1_INT32, 111
L1_INT32_MAX, 112
L1_INT32_MIN, 112
L1_UINT16, 111
L1_UINT16_MAX, 112
L1_UINT16_MIN, 112
L1_UINT32, 112
L1_UINT32_MAX, 113
L1_UINT32_MIN, 113

OCR_Event_Hub
L1_RaiseEvent_NW, 85
L1_RaiseEvent_W, 86
L1_RaiseEvent_WT, 86
L1_TestEvent_NW, 87
L1_TestEvent_W, 87
L1_TestEvent_WT, 87

OCR_FIFO_Hub
L1_DequeueFifo_NW, 100
L1_DequeueFifo_W, 100
L1_DequeueFifo_WT, 101
L1_EnqueueFifo_NW, 101
L1_EnqueueFifo_W, 102
L1_EnqueueFifo_WT, 102

OCR_MemoryPool_Hub
L1_AllocateMemoryBlock_NW, 105
L1_AllocateMemoryBlock_W, 105
L1_AllocateMemoryBlock_WT, 106
L1_DeallocateMemoryBlock_W, 107

OCR_Port_Hub
L1_GetPacketFromPort_NW, 80
L1_GetPacketFromPort_W, 80
L1_GetPacketFromPort_WT, 81
L1_PutPacketToPort_NW, 81
L1_PutPacketToPort_W, 82
L1_PutPacketToPort_WT, 82

OCR_Resource_Hub
L1_LockResource_NW, 95
L1_LockResource_W, 95
L1_LockResource_WT, 95
L1_UnlockResource_NW, 96
L1_UnlockResource_W, 96
L1_UnlockResource_WT, 97

OCR_Semaphore_Hub
L1_SignalSemaphore_NW, 90
L1_SignalSemaphore_W, 90
L1_SignalSemaphore_WT, 91

OpenComRTOS-Suite 1.4.3.3 Manual

208 INDEX

L1_TestSemaphore_NW, 91
L1_TestSemaphore_W, 92
L1_TestSemaphore_WT, 92

OCR_TaskManagement
L1_ResumeTask_W, 108
L1_StartTask_W, 108
L1_StopTask_W, 108
L1_SuspendTask_W, 109
L1_WaitTask_WT, 110

OCR_TIMER_TYPES
L1_Time, 113
L1_Time_MAX, 113
L1_Time_MIN, 113
L1_Timeout, 113

OCR_VERSION
L1_api_apidoc.h, 116

OpenSystemInspectorClient.h
getHubById, 166
getLocalHub, 166
getOSIVersion, 167
getPPSize, 167
getPreallocatedPacket, 167
getReadyList, 167
getTaskById, 167
getTCB, 167
Hubs, 167
OSIClient_entrypoint, 168
OSIClient_ISR, 168
osiLock, 167
osiUnlock, 167
peek, 168
poke, 168
sendPacketToServer, 168
startTasks, 168
stopTasks, 169

OpenSystemInspectorServer.h
GetHubByID, 170
GetHubByID_Return, 170
GetLocalHub, 170
GetLocalHub_Return, 170
GetOSIVersion, 170
GetOSIVersion_Return, 170
GetPacketPoolSize, 170
GetPacketPoolSize_Return, 170
GetPreallocatedPacket, 170
GetPreallocatedPacket_Return, 170
GetReadyList, 169
GetReadyList_Return, 170
GetReadyList_Transmit, 170
GetTaskByID, 170
GetTaskByID_Return, 170
GetTCB, 170
GetTCB_Return, 170
OSIEntryPoint, 170

Peek, 170
Peek_Return, 170
Poke, 170
Poke_Return, 170
returnReadyList, 170
RunAllTasks, 169
sendHubInfo, 170
sendTaskInfo, 170
SERVICE, 169
ShowHexLocalHub, 170
ShowHexTCB, 170
StopAllTasks, 169

OpenSystemInspectorService.h
id_type, 171
OSI_VERSION, 171

OSI_VERSION
OpenSystemInspectorService.h, 171

OSIClient_entrypoint
OpenSystemInspectorClient.h, 168

OSIClient_ISR
OpenSystemInspectorClient.h, 168

OSIEntryPoint
OpenSystemInspectorServer.h, 170

osiLock
OpenSystemInspectorClient.h, 167

osiUnlock
OpenSystemInspectorClient.h, 167

PacketPool
_union_Hubs, 162

Peek
OpenSystemInspectorServer.h, 170

peek
OpenSystemInspectorClient.h, 168

Peek_Return
OpenSystemInspectorServer.h, 170

Poke
OpenSystemInspectorServer.h, 170

poke
OpenSystemInspectorClient.h, 168

Poke_Return
OpenSystemInspectorServer.h, 170

Port Hub, 77
priority

taskInfoStruct, 163
programBuffer

SvmHsSync, 187
programBufferSize

SvmHsSync, 187

r
GhsColour, 142

RC_FAIL
L1_types_apidoc.h, 121

OpenComRTOS-Suite 1.4.3.3 Manual

INDEX 209

RC_OK
L1_types_apidoc.h, 121

RC_TO
L1_types_apidoc.h, 121

registers
SvmHsSync, 187

req
reqType, 163

reqType, 162
address, 163
id, 163
objId, 163
req, 163

request
SvmHsSync, 187

requestIssued
SvmHsSync, 187

Resource
_union_Hubs, 162

Resource Hub Operations, 93
returnReadyList

OpenSystemInspectorServer.h, 170
right

GhsRect, 143
RunAllTasks

OpenSystemInspectorServer.h, 169

Save Virtual Machine for C, 175
Semaphore

_union_Hubs, 162
Semaphore Hub Operations, 88
sendHubInfo

OpenSystemInspectorServer.h, 170
sendPacketToServer

OpenSystemInspectorClient.h, 168
sendTaskInfo

OpenSystemInspectorServer.h, 170
SERVICE

OpenSystemInspectorServer.h, 169
ShowHexLocalHub

OpenSystemInspectorServer.h, 170
ShowHexTCB

OpenSystemInspectorServer.h, 170
Shs_closeFile_W

StdioHostClient.h, 128
Shs_getChar_W

StdioHostClient.h, 129
Shs_getFloat_W

StdioHostClient.h, 129
Shs_getInt_W

StdioHostClient.h, 129
Shs_getString_W

StdioHostClient.h, 130
Shs_openFile_W

StdioHostClient.h, 130
Shs_putChar_W

StdioHostClient.h, 130
Shs_putFloat_W

StdioHostClient.h, 131
Shs_putInt_W

StdioHostClient.h, 131
Shs_putString_W

StdioHostClient.h, 131
Shs_readFromFile_W

StdioHostClient.h, 132
SHS_VERSION

StdioHostClient.h, 128
Shs_writeToFile_W

StdioHostClient.h, 132
ShsGetVersion

StdioHostClient.h, 128
size

_union_Hubs::_struct_L1_Fifo_, 160
_union_Hubs::_struct_L1_PacketPool_, 160

src/include/GraphicalHostService/GhsTypes.h, 145
src/include/GraphicalHostService/GraphicalHostClient.h,

145
src/include/GraphicalHostService/GraphicalHostService.h,

150
src/include/StdioHostService/StdioHostClient.h, 127
src/include/StdioHostService/TraceHostClient.h, 133
src/kernel/L1_types.c, 121
startTasks

OpenSystemInspectorClient.h, 168
state

SvmHsSync, 188
taskInfoStruct, 163

stateChanged
SvmHsSync, 188

StdioHostClient.h
Shs_closeFile_W, 128
Shs_getChar_W, 129
Shs_getFloat_W, 129
Shs_getInt_W, 129
Shs_getString_W, 130
Shs_openFile_W, 130
Shs_putChar_W, 130
Shs_putFloat_W, 131
Shs_putInt_W, 131
Shs_putString_W, 131
Shs_readFromFile_W, 132
SHS_VERSION, 128
Shs_writeToFile_W, 132
ShsGetVersion, 128

StopAllTasks
OpenSystemInspectorServer.h, 169

stopTasks
OpenSystemInspectorClient.h, 169

OpenComRTOS-Suite 1.4.3.3 Manual

210 INDEX

style
GhsBrush, 141
GhsPen, 142

SVM_CLEAR_MEMORY
SvmServer.h, 193

SVM_ERROR_PROCESS_SWI
SvmServer.h, 194

SVM_ERROR_UNKNOWN_INSTRUCTION
SvmServer.h, 194

SVM_GET_ERROR_INFO
SvmServer.h, 193

SVM_GET_STATE
SvmServer.h, 193

SVM_LOAD_TASK
SvmServer.h, 193

SVM_LOAD_TASK_SESSION_START
SvmServer.h, 193

SVM_LOAD_TASK_SESSION_STOP
SvmServer.h, 193

SVM_NO_ERROR
SvmServer.h, 194

SVM_NO_REQUEST
SvmServer.h, 193

SVM_START_TASK
SvmServer.h, 193

SVM_START_VM
SvmServer.h, 193

SVM_STOP_TASK
SvmServer.h, 193

SVM_STOP_VM
SvmServer.h, 193

SVM_SUSUPEND_VM
SvmServer.h, 193

SVM_VM_ERROR
SvmServer.h, 193

SVM_VM_RUNNING
SvmServer.h, 193

SVM_VM_STOPPED
SvmServer.h, 193

SVM_VM_SUSPENDED
SvmServer.h, 193

Svm_clearMemory
SvmClient.h, 189

SVM_COMMAND_HTON
SvmServer.h, 192

SVM_COMMAND_LENGTH
SvmServer.h, 192

SVM_COMMAND_NTOH
SvmServer.h, 192

SVM_COMMAND_TYPE
SvmServer.h, 192

Svm_errorDescription, 185
errorCode, 185

Svm_getErrorInfo

SvmClient.h, 189
Svm_getState

SvmClient.h, 190
Svm_loadTask

SvmClient.h, 190
Svm_loadTaskFromFile

SvmClient.h, 190
SVM_PROTOCOL

SvmServer.h, 193
SVM_REQUEST

SvmServer.h, 193
Svm_startTask

SvmClient.h, 191
SVM_STATE

SvmServer.h, 193
SVM_STATE_LENGTH

SvmServer.h, 192
SVM_STATE_TYPE

SvmServer.h, 192
Svm_stopTask

SvmClient.h, 191
Svm_taskArguments, 185

bytesReceived, 186
clientInterfacePacket, 186
nextClientPacket, 186
SvmServerInputPort, 186
SvmServerOutputPort, 186
vmInterfacePacket, 186
vmState, 186

Svm_vmTaskArguments, 186
vmState, 186

SvmClient.h
Svm_clearMemory, 189
Svm_getErrorInfo, 189
Svm_getState, 190
Svm_loadTask, 190
Svm_loadTaskFromFile, 190
Svm_startTask, 191
Svm_stopTask, 191

SvmErrorCode
SvmServer.h, 193

SVMHS_VERSION
SvmService.h, 194

SvmHsSync, 187
errorCode, 187
programBuffer, 187
programBufferSize, 187
registers, 187
request, 187
requestIssued, 187
state, 188
stateChanged, 188

SVML_HOST_SERVICE_HEADER
SvmService.h, 194

OpenComRTOS-Suite 1.4.3.3 Manual

INDEX 211

SvmRequest
SvmServer.h, 192

SvmServer.h
SVM_CLEAR_MEMORY, 193
SVM_ERROR_PROCESS_SWI, 194
SVM_ERROR_UNKNOWN_INSTRUCTION,

194
SVM_GET_ERROR_INFO, 193
SVM_GET_STATE, 193
SVM_LOAD_TASK, 193
SVM_LOAD_TASK_SESSION_START, 193
SVM_LOAD_TASK_SESSION_STOP, 193
SVM_NO_ERROR, 194
SVM_NO_REQUEST, 193
SVM_START_TASK, 193
SVM_START_VM, 193
SVM_STOP_TASK, 193
SVM_STOP_VM, 193
SVM_SUSUPEND_VM, 193
SVM_VM_ERROR, 193
SVM_VM_RUNNING, 193
SVM_VM_STOPPED, 193
SVM_VM_SUSPENDED, 193
SVM_COMMAND_HTON, 192
SVM_COMMAND_LENGTH, 192
SVM_COMMAND_NTOH, 192
SVM_COMMAND_TYPE, 192
SVM_PROTOCOL, 193
SVM_REQUEST, 193
SVM_STATE, 193
SVM_STATE_LENGTH, 192
SVM_STATE_TYPE, 192
SvmErrorCode, 193
SvmRequest, 192
SvmState, 192

SvmServerInputPort
Svm_taskArguments, 186

SvmServerOutputPort
Svm_taskArguments, 186

SvmService.h
SVMHS_VERSION, 194
SVML_HOST_SERVICE_HEADER, 194

SvmState
SvmServer.h, 192

tail
_union_Hubs::_struct_L1_Fifo_, 160

Task Management Operations, 107
taskID

_union_Hubs::_struct_L1_Resource_, 161
taskInfoStruct, 163

priority, 163
state, 163

The OpenComRTOS Hub Concept, 77

theServicePacket
L1_api_apidoc.h, 116

top
GhsRect, 143

TraceHostClient.h
DumpTraceBuffer_W, 133

type
hubInfoStruct, 162

Types related to Timer Handling, 113

vmInterfacePacket
Svm_taskArguments, 186

vmState
Svm_taskArguments, 186
Svm_vmTaskArguments, 186

OpenComRTOS-Suite 1.4.3.3 Manual

	I OpenComRTOS Fundamentals
	General Concepts
	Background of OpenComRTOS
	Physical structure of the target processing system
	Layered architecture of OpenComRTOS
	The logical view of the L1 Layer
	Principle of synchronization and communication
	Scheduling Tasks and Task interactions through the RTOS kernel

	Inter-Task interaction
	Application specific services
	A new concurrent programming paradigm
	Inter-Node interaction

	Functional Design of the L1 Layer
	Task interactions
	Logical view of Task
	Logical view of Packets
	Logical view of the generic L1 Hubs
	On scheduling for real-time
	On Timers
	On runtime errors
	Logical view of the Packet Pool

	Inter-node interactions
	Logical view of Link Drivers and inter-node interactions
	Logical view of the Router

	Multi-tasking
	Definition of multi-tasking
	Logical view of the Context Switch
	Logical view of the Kernel
	Logical view of the Scheduler

	II Installation Instructions
	Installation Instructions
	OpenComRTOS-Suite Installation Instructions
	MinGW Tool-chain for Windows
	Adding MinGW to the System Binary Search Path
	Installing the SVM Toolchain
	CMake Build System
	Installing the OpenComRTOS-Suite
	Installing an additional OpenComRTOS Kernel Image

	How to run an Example
	Summary

	Installing ARM Cortex M3
	OpenComRTOS-Suite Installation Instructions
	Installing the OpenComRTOS Kernel Image for NXP-CoolFlux

	Setup of the LM3S6965 Development Board
	FTDI Driver Installation
	Installing the LM Flash Programmer

	Building and Running a Heterogeneous System
	Semaphore Loop using RS232 link Technology
	Semaphore Loop using TCP-IP over Ethernet link Technology

	OpenComRTOS Tracing
	Tracing in OpenComRTOS
	How to enable tracing
	How to retrieve a trace

	Summary

	Installing NXP-Coolflux
	OpenComRTOS-Suite Installation Instructions
	Installing the OpenComRTOS Kernel Image for NXP-CoolFlux

	Examples
	Loading and building a NXP-CoolFlux Example with OpenVE
	Example: SemaphoreLoop_W
	Example: PortLoop_W
	Example: Semaphore_WT
	Example: CodeSize_AllServices
	Example: CodeSize_AllServices_pTimer
	Example: InterruptLatencyMeasurement

	Summary

	III Usage Tutorials
	Howto Use the Open System Inspector

	IV OpenComRTOS
	Module Index
	Modules

	File Index
	File List

	Module Documentation
	The OpenComRTOS Hub Concept
	Port Hub
	Detailed Description
	Hub Description
	Example
	Source Code for Task1EntryPoint
	Source Code for Task2EntryPoint
	Function Documentation

	Event Hub Operations
	Detailed Description
	Example
	Source Code of Task1EntryPoint
	Source Code of Task2EntryPoint
	Function Documentation

	Semaphore Hub Operations
	Detailed Description
	Example
	Source Code of Task1EntryPoint
	Source Code of Task2EntryPoint
	Function Documentation

	Resource Hub Operations
	Detailed Description
	Example
	Source Code of Task1EntryPoint
	Source Code of Task2EntryPoint
	Function Documentation

	FIFO Hub Operations
	Detailed Description
	Example
	Source Code of Task1EntryPoint
	Source Code of Task2EntryPoint
	Function Documentation

	Memory Pool Hub Operations
	Detailed Description
	Example
	Function Documentation

	Task Management Operations
	Detailed Description
	Function Documentation

	Base Variable types
	Typedef Documentation
	Variable Documentation

	Types related to Timer Handling
	Typedef Documentation
	Variable Documentation

	File Documentation
	include/L1_api_apidoc.h File Reference
	Define Documentation
	Function Documentation

	include/L1_types_apidoc.h File Reference
	Define Documentation
	Typedef Documentation
	Enumeration Type Documentation

	src/kernel/L1_types.c File Reference

	V Stdio Host Service
	File Index
	File List

	File Documentation
	src/include/StdioHostService/StdioHostClient.h File Reference
	Define Documentation
	Function Documentation

	src/include/StdioHostService/TraceHostClient.h File Reference
	Function Documentation

	VI Graphical Host Service
	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	GhsBrush Struct Reference
	Detailed Description
	Field Documentation

	GhsColour Struct Reference
	Detailed Description
	Field Documentation

	GhsPen Struct Reference
	Detailed Description
	Field Documentation

	GhsRect Struct Reference
	Detailed Description
	Field Documentation

	File Documentation
	src/include/GraphicalHostService/GhsTypes.h File Reference
	Enumeration Type Documentation

	src/include/GraphicalHostService/GraphicalHostClient.h File Reference
	Function Documentation

	src/include/GraphicalHostService/GraphicalHostService.h File Reference
	Define Documentation

	VII Open System Inspector Service
	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	_union_Hubs::_struct_L1_Event_ Struct Reference
	Field Documentation

	_union_Hubs::_struct_L1_Fifo_ Struct Reference
	Field Documentation

	_union_Hubs::_struct_L1_PacketPool_ Struct Reference
	Field Documentation

	_union_Hubs::_struct_L1_Resource_ Struct Reference
	Field Documentation

	_union_Hubs::_struct_L1_Semaphore_ Struct Reference
	Field Documentation

	_union_Hubs Union Reference
	Field Documentation

	hubInfoStruct Struct Reference
	Detailed Description
	Field Documentation

	reqType Struct Reference
	Field Documentation

	taskInfoStruct Struct Reference
	Detailed Description
	Field Documentation

	File Documentation
	include/OpenSystemInspector/OpenSystemInspectorClient.h File Reference
	Define Documentation
	Typedef Documentation
	Function Documentation

	include/OpenSystemInspector/OpenSystemInspectorServer.h File Reference
	Enumeration Type Documentation
	Function Documentation

	include/OpenSystemInspector/OpenSystemInspectorService.h File Reference
	Define Documentation
	Typedef Documentation

	VIII Save Virtual Machine for C
	Safe Virtual Machine for C (SVM)
	Introduction
	SVM Host Server
	Properties

	SVM-Platform
	Properties

	Tutorial

	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	Svm_errorDescription Struct Reference
	Field Documentation

	Svm_taskArguments Struct Reference
	Field Documentation

	Svm_vmTaskArguments Struct Reference
	Field Documentation

	SvmHsSync Struct Reference
	Detailed Description
	Field Documentation

	File Documentation
	include/SvmService/SvmClient.h File Reference
	Function Documentation

	include/SvmService/SvmServer.h File Reference
	Define Documentation
	Typedef Documentation
	Enumeration Type Documentation

	include/SvmService/SvmService.h File Reference
	Define Documentation

	IX Appendix
	References
	Glossary
	Index

