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Abstract

OpenComRTOS is one of the few Real-Time Operat-
ing Systems for embedded systems that was developed us-
ing formal modeling techniques. The goal was to obtain
a proven trustworthy component with a clean architecture
which delivers high performance on a wide variety of net-
worked embedded systems, ranging from single processor
to distributed systems. The result is a scalable communi-
cation system with real-time capabilities. Besides, the rig-
orous formal verification of the kernel algorithms lead to
an architecture which has several properties that enhance
safety and real-time properties of the RTOS. The code size
in particular is very small, typically 10 times less compared
with a typical equivalent single processor RTOS. The latter
allows a much better use of the on-chip memory resources.

To this point we ported OpenComRTOS to the MicroB-
laze processor from Xilinx. In this processor environment
OpenComRTOS competes with a number of different oper-
ating systems, including the standard operating system Xil-
inx Micro Kernel. This paper reports code size figures of the
OpenComRTOS on a MicroBlaze target. We found that this
code size is considerably smaller compared with published
code sizes of other operating systems.

1. Introduction

Real-Time Operating Systems (RTOSs) are a key soft-
ware module for embedded systems, often requiring proper-
ties of high reliability and safety. Unfortunately, most com-
mercial, as well as open source implementations cannot be
verified or even certified, e.g. according to the DoD 178B
or IEC61508 standards. Similarly, software engineering is
often done in a non-systematic way, although well defined
and established Systems Engineering Processes exist [1, 6].
The software is rarely proven to be correct even though this
is possible with formal model checkers [5]. In the context
of a unified systems engineering approach [2] we undertook

a research project were we followed a stricter methodol-
ogy, including formal model checking, to obtain a network-
centric RTOS which can be used as a trusted component.

1.1 General requirements for OpenComRTOS

The history for this project goes back to the early 1990’s
when a distributed real-time RTOS called Virtuoso (Eonic
Systems) was developed for the INMOS transputer [10].
This processor had build in support for concurrency as well
as interprocess communication and was enabled for paral-
lel processing by way of 4 communication links. Virtuoso
allowed such a network of processors to be programmed
in a topology transparent way. Later, the software evolved
and was ported from single chip microcontrollers to sys-
tems with over a thousand Digital Signal Processors until
the technology was acquired by Wind River and after a few
years they removed it from the market. The OpenCom-
RTOS project was motivated by lessons learned from de-
veloping three Virtuoso generations. These lessons became
part of the requirements. We list the most important ones:

• Scalability: The RTOS should support very small sin-
gle processor systems, as well as widely distributed
processing systems interconnected through external
networks like the internet. To achieve that, the devel-
oping software must be independent of the mapping
onto the network topology.
• Efficiency: The essence of multi-processor systems is

communication. The challenge, from an RTOS point
of view, is keeping the latency to a minimum while at
the same time maximizing the performance. This is
achieved when most of the critical code resides in the
limited amount of on-chip memory.
• Small code size: This has a double benefit: a) perfor-

mance and b) less complexity. Less complex systems
have fewer potential sources of errors and side-effects.
• Trustworthy: As testing of distributed systems be-

comes very time consuming, it is mandatory that the



Figure 1. Open License Society: the unified
view

system software can be trusted from the start. As er-
rors typically occur in “corner cases”, the use of formal
methods was deemed necessary.

• Maintainability and ease of development: The code
needs to be clear and simple and facilitate the devel-
opment of e.g. drivers, the latter often been the weak
point in system software.

OpenComRTOS provides the runtime environment support-
ing these requirements. The remainder of this paper focuses
on this runtime environment and the execution on a MicroB-
laze target. But, before we discuss the details of OpenCom-
RTOS in greater detail, we deduce a two general points from
the list of requirements.

The scalability requirement imposes that data-
communication is central in the RTOS architecture.
Therefore, OpenComRTOS is network centric. The trust-
worthiness and maintainability aspects are addressed in
the context of a Systems Engineering methodology, the
use of common semantics during all activities is crucial.
Because only common semantics enable us to generate
most of the implementation code from the modeling and
simulation phase. Generated code is more trustworthy
compared with handwritten code. Using an “Interacting
Entities” paradigm requires a runtime environment that
supports concurrency and synchronization/communication
in a native way between concurrent entities.

2. OpenComRTOS architecture

Even with the points mentioned above, Virtuoso was a
successful product. The goal was to improve on its weak-
nesses. Its architecture was performant but very hard to port
and to maintain. Hence, for OpenComRTOS we adopted
a layered architecture which is based on semantic layer-
ing. The lowest functionality level (L0) is limited to pri-
ority based preemptive multitasking. In L0 Tasks exchange
standardized Packets using an intermediate entity we called
Ports. Hence, Tasks can synchronise and communicate
using Packets and Ports. The Packets are the essential
workhorse of the system. They have header and data fields
and are exclusively used for all services, rather than in-
voking function calls or using jump tables. Hence, it be-
comes straightforward to provide services that operate in a
transparent way across processor boundaries. Furthermore,
Packets are very efficient, because kernel operations often
come down to shuffling around Packets (using handlers) be-
tween system level datastructures.

At the next semantic level (L1) we added more tradi-
tional RTOS services like events, semaphores, queues, re-
sources, etc. Finally, the architecture was kept simple and
modular by developing kernel and drivers as Tasks. All
these Tasks have a ‘Task input Port’ for accepting Pack-
ets from other Tasks. This has some unusual consequences
like: a) the possibility to process interrupts received on one
processor on another processor, b) the kernel having a lower
priority than the drivers or even c) having multiple kernel
Tasks on a single node.

2.1 Systems Engineering approach

The Systems Engineering approach from Open License
Society, outlined in Figure 1, is a classical one as defined
in [2], but adapted to the needs of embedded software de-
velopment. It is first of all an evolutionary process us-
ing continuous iterations. In such a process, much atten-
tion is paid to an incremental development requiring reg-
ular review meetings by several of the stakeholders. On
an architectural level, the system or product under devel-
opment is defined under the paradigm of “Interacting En-
tities”, which maps very well on an RTOS based runtime
system. Applied to the development of OpenComRTOS,
the process was started by elaborating a first set of require-
ments and specifications. Next, an initial architecture was
defined. From this point on, two groups started to work in
parallel. The first group worked out an architectural model,
while a second group developed initial formal models using
TLA+/TLC [9]. These models were incrementally refined.

Note that no real attempt was made to model the com-
plete system at once. First of all, this is not possible in
a generic way, because formal TLA models cannot be pa-
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rameterised. For example, one must model a specific set of
tasks and services this leads very quickly to a state explo-
sion which limits the achievable complexity of such models.
Hence, we modeled only specific parts, e.g. a model was
build for each class of services (Ports, Events, Semaphores,
etc.). This was sufficient and gives the benefit of having
very clean, orthogonal models.

At each review meeting between the software engineers
and the formal modeling engineer, more details were added
to the models, the models were checked for correctness and
a new iteration was started. This process was stopped when
the formal models were deemed close enough to the im-
plementation architecture. Next, a simulation model was
developed on a PC (using Windows NT as a virtual target).
This code was then ported to a real 16bit microcontroller
[5]. On this target a few specific optimizations were per-
formed on the implementation, while fully maintaining the
design and architecture. The software was written in ANSI
C and verified for safe coding practices with a MISRA rule
checker [3].

2.2. Lessons from using formal modeling

The goal of using formal techniques is the ability to
prove that the software is correct. This is an often heard
statement from the formal techniques community. A first
surprise was that each model gave no errors when verified
by the TLC model checker. This is actually due to the itera-
tive nature of the model development process and partly its
strength. From an initial rather abstract model, successive
models are developed by checking them using the model
checker and hence each model is correct when the model
checker finds no illegal states. As such, model checkers
can’t proof that the software is correct. They can only proof
that the formal model is correct. For a complete proof of
the software the whole programming chain as well as the
target hardware should be modeled and verified. This is an
unachievable goal due to its complexity and the resulting
state space explosion. It was nevertheless attempted in the
Verisoft project [4]. The model itself would be many times
larger than the developed software. This indicates that if
we would make use of verified target processors and veri-
fied programming language compilers, model checking be-
comes practical, because it is limited to modeling the appli-
cation.

Other issues, related to formal modelling, were also dis-
covered. A first issue is that the TLC model checker de-
clares every action as a critical section, whereas e.g. in
the case of a RTOS, many components operate concurrently
and real-time performance dictates that on a real target the
critical sections are kept as short as possible. This dictates
us to avoid shared data structures, however it would be help-
ful to have formal model assistance that indicates the re-

quired critical sections.

2.3. Benefits obtained from using formal modeling

As was outlined above, the use of formal modeling was
found to result in a much better architecture. This benefit re-
sults from successive iteration and review of the model. An-
other reason for the better architecture is the fact that formal
model checkers provide a higher level of abstraction com-
pared with the implementation. In the project we found that
the semantics associated with specific programming terms
involuntarily influence choices made by the architecting en-
gineer. An example was the use of both waiting lists and
Port buffers, which is one of the main concepts of Open-
ComRTOS. A waiting list is associated just with a waiting
action but one overlooks that it also provides buffering be-
havior. Hence, one waiting list is sufficient resulting in a
smaller and cleaner architecture.

Formal modeling and abstract levels have helped to in-
troduce, define and maintain orthogonal architectural con-
cepts. Orthogonality is key to small and safe, i.e. reliable,
designs. Similarly, even if there was a short learning curve
to master the mathematical notation in TLA, with hindsight
this was an advantage vs. e.g. SPIN [8] that uses a C-like
syntax. The latter leads automatically to thinking in terms
of an implementation code with all its details, whereas the
abstraction of TLA helps to think in more abstract terms.
This also highlights the importance of specifying first be-
fore implementation is started.

A final observation is that using formal modeling tech-
niques turned out to be a much more creative process than
the mathematical framework suggests. TLA/TLC as such
was primarily used as an architectural design tool, aiding
the team in formulating ideas and testing them in a rather
abstract way. This was proven to be a team work with lots of
human interaction between the team members. The formal
verification of the RTOS itself was basically a side-effect
of building and running the models. Hence, this project
has shown how a combination of team work with extensive
peer-review, formal modeling support and a well defined
goal can result in a “correct-by-design” product.

2.4. Novelties in the architecture

OpenComRTOS has a semantically layered architecture.
At the lowest level (L0) the minimum set of Entities pro-
vides everything that is needed to build a small networked
real-time application.

The Entities needed are Tasks (having a private function
and workspace), an Interacting Entity we called a Port to
synchronize and communicate between the Tasks, see Fig-
ure 2. Ports act like channels in the tradition of Hoare’s CSP
[7], but they allow multiple waiters and asynchronous com-
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Figure 2. OpenComRTOS-L0 view

munication. One of the Tasks is a kernel Task scheduling
the Tasks in order of priority and managing and providing
Port based services. Driver Tasks handle inter-node com-
munication. Pre-allocated as well as dynamically allocated
Packets are used as carriers for all activities in the RTOS,
such as: service requests to the kernel, Port synchroniza-
tion, data-communication, etc. Each Packet has a fixed size
header and data payload with a user defined but global data
size. This significantly simplifies the Packet management,
particularly at the communication layer. A router function
also transparently forwards Packets in order of priority be-
tween the network nodes.

In the next semantic level (L1) services and Entities were
added, similar to those which can be found in most RTOSs:
Boolean events, counting semaphores, FIFO queues, re-
sources, memory pools, etc. The formal modeling leads to
the definition of all such Entities as semantic variants of a
common and generic entity type. We called this generic en-
tity a “Hub”. In addition, the formal modeling also helped
to define “clean” semantics for such services, whereas ad-
hoc implementations often have side-effects. In Table 1 we
summarise the semantics.

The services are offered in a non-blocking variant
( NW), a blocking variant ( W), a blocking with timeout
variant ( WT) and an asynchronous variant when this makes
sense. All services are topology transparent and the map-
ping of Task and kernel Entities onto this network. See Ta-
bles 1 and 2 for details on the semantics.

Using of a single generic entity leads to a much greater

L1 Entity Semantics
Event Synchronisation on a Boolean value.
Counting
Semaphore

Synchronisation with counter allowing
asynchronous signaling.

Port Synchronisation with exchange of a
Packet.

FIFO
queue

Buffered communication of Packets. Syn-
chronisation when queue is full or empty.

Resource Event used to create a logical critical sec-
tion. Resources have an owner Task when
locked.

Memory
Pool

Linked list of memory blocks protected
with a resource.

Table 1. Semantics of L1 Entities

Services
variants

Synchronising Behavior

“Single-phase” services
NW Non Waiting: when the matching filter

fails the Task returns with a RC Failed.
W Waiting: when the matching filter fails the

Task waits until such events happens.
WT Waiting with a time-out. Waiting is limited

in time defined by the time-out value.
“Two-phase” services
Async Asynchronous: when the entity is compat-

ible with it, the Task continues indepen-
dently of success or failure and will resyn-
chronize later on. This class of services is
called “two-phase” services.

Table 2. Service synchronization variant

code reuse, the resulting code size is at least 10 times less
than for an RTOS with a more traditional architecture. One
could of course remove all such application-oriented ser-
vices and just use Hub based services. Unfortunately, this
has the drawback that services loose their specific seman-
tic richness, e.g. resource locking clearly expresses that
the Task enters a critical section in competition with other
Tasks. Also erroneous runtime conditions, like raising an
event twice (with loss of the previous event), are easier to
detect at application level compared with the case when
only a generic Hub is used.

During the formal modeling we also discovered weak-
nesses in the traditional way priority inheritance is imple-
mented in most RTOSs, fortunately we found a way to re-
duce the total blocking time. In single processor RTOS sys-
tems this is less of an issue, but in multi-processor systems,
all nodes can originate service requests and resource lock-
ing is a distributed service. Hence, the waiting lists can
grow longer and lower priority Tasks can block higher pri-
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ority ones while waiting for the resource. This was solved
by postponing the resource assignment until the reschedul-
ing moment. Finally, by generalization, also memory allo-
cation has been approached like a resource locking service.
In combination with the Packet Pool, this opens new possi-
bilities for safe and secure memory management, e.g. the
OpenComRTOS architecture is free from buffer overflow
by design.

For the third semantic layer (L2), we will add dynamic
support like mobility of code and of kernel Entities. A po-
tential candidate is a light weight virtual machine support-
ing capabilities as modeled in pi-calculus [11]. This is the
subject of further investigations and will be reported in sub-
sequent papers.

2.5. Inherent safety support

By its architecture the L0 and L1 semantic layers are all
statically linked, hence an application specific image will be
generated by the compiler tools. As we don’t consider secu-
rity risks for the moment, our concern is limited to verifying
if the code is inherently safe.

A first level of safety is provided by the formal model-
ing approach. Each service is intensely modeled and veri-
fied with most “corner cases” detected during design time
prior to writing code. A second level is provided by the
kernel services. All services have well defined semantics.
Even when they are asynchronously used, the services be-
come synchronous when resources become depleted. At
such moments, a Task is forced to wait allowing other Tasks
to proceed and free up resources (like Packets, space in the
buffers, etc.). Hence, the systems becomes “self-throttling”.
A third level is provided by the data structures, mostly based
on Packets. All single-phase services use statically allo-
cated Packets which are part of the Task context. These
Packets are used for service requests, even when going
across processor boundaries. They also carry return val-
ues. For two phase services Packets must be allocated from
a Packet Pool. When the Pool is empty, the system will start
to throttle until Packets are released. Another specific archi-
tectural feature is the fact that buffers cannot overflow. In
the worst case, the application programmer defined insuffi-
cient Packets in the Pool and the buffers will stop growing
when all Packets are in use. A last level is the program-
ming environment. All Entities (at L0 and L1) are defined
statically, so they are generated together with all other sys-
tem level data structures by a tool, hence no Entities can be
created at runtime. Of course, dynamic support at L2 will
require extra support. However, this can only be achieved
reliably with hardware support, e.g. to provide protected
memory spaces. The same applies to using stack spaces.
In OpenComRTOS interrupts are handled on a private and
separate stack, so that the Task’s stack spaces are not af-

Figure 3. Hardware setup of the test system

fected. On the MLX16 such a space can be protected, but
it is clear that such an inexpensive mechanism should be a
must for all embedded processors. A full MMU is not only
too complex and too large it is also simply not needed. The
kernel has various threshold detectors and provides support
for profiling, but the details are outside the scope of this
paper.

3 OpenComRTOS on a MicroBlaze

Field Programmable Gate Arrays (FPGAs) are emerging
as an interesting design alternative for system prototyping
and implementation for critical applications when the pro-
duction volume is low [12]. Therefore, we realised the tar-
get architecture with the Xilinx Embedded Developer Kit
9.2 and synthesized with Xilinx ISE version 9.2 on a Spar-
tan xc3s1500 Speed Grade -5 FPGA clocked at 50 MHz.
Our architecture, shown in Figure 3, is composed of one
MicroBlaze processor connected to a Processor Local Bus
(PLB). The PLB enables accessing TIMER and GPIO. The
TIMER is used to measure the time it takes to execute con-
text switches. The GPIO was used for basic debugging. The
processor uses local memory to store code and data of the
Task it runs. This memory is implemented through Block
RAMs (BRAMs). The MicroBlaze Debug Module (MDM)
enables remote debugging of the MicroBlaze processor.

3.1 Code size figures

This section reports the code size figures of OpenCom-
RTOS on the MicrBlaze target. To put these figures into
perspective we did two things. First the OpenComRTOS
code size figures on the MicroBlaze target are compared
with the ones on the MLX16 target. The second compar-
ison is concerned with the code size figures for a simple
semaphore example. This example has been implemented
using a) using Xilinx Micro-Kernel (XMK) b) OpenComR-
TOS. The later example is more important, because we can
show that OpenComRTOS uses half the memory, compared
to the XMK, for the same functionality.

Table 3 reports the code size figures for individual L1
services on MLX16 and MicroBlaze. The total code size
of L1 services is just the sum of the individual code sizes.
The Grand Total is the sum of all (Total) L1 services and all
L0 serves as well as the boot loader, if present. In general
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Figure 4. Example project

the code size figures are lower for the MLX16. This is a
result of the different processor architectures, MLX16 is a
16bit CISC like microcontroller and MicroBlaze is a 32bit
RISC processor. This difference is especially prominent in
the Grand Total figures, where the MLX16 requires only
about one-third of the code size compared with the MicroB-
laze. One reason for this difference is the fact that MLX16
has only 4 registers, which need saving during L0 context
switches, compared with 31 for the MicroBlaze.

Service MLX16 MicroBlaze
L1 Hub shared 400 668
L1 Port 4 8
L1 Event 70 88
L1 Semaphore 54 92
L1 Resource 104 96
L1 FIFO 232 356
Total L1 services 1048 1308
Grand Total 2104 5500

Table 3. OpenComRTOS L1 code size figures
MLX16 vs. MicroBlaze

A complete comparison of code size figures between
XMK and OpenComRTOS is not possible, because these
operating systems offer different services. However, to give
an indication of the code size efficiency we implemented
a simple application based on two services both OS offer.
Figure 4 shows two tasks which exchange messages and
synchronise on two semaphores, in both cases 1KiB stack
was used. Table 4 shows that OpenComRTOS takes up
about one third of the memory used by XMK. This is an im-
portant result, because with OpenComRTOS there is more
RAM for user applications. This is particularly important
when either for speed reasons or for PCB size constraints
the complete application has to run in internal (BRAM)
memory. One last point in favor of OpenComRTOS is the
fact that the kernel can be stripped down to fit in even less
memory, e.g. 1KiB L0 with about 300Bytes of data on an
MLX16.

4. Conclusions

The OpenComRTOS project has shown that even for
software domains often associated with ‘black art’ program-

OS .text .data .bss total
XMK 12496 348 7304 20148
OpenComRTOS 6016 1008 6320 13344

Table 4. XMK vs OpenComRTOS code size

ming, formal modeling works very well. The resulting
software is not only very robust and maintainable but also
very performing in size and timings and inherently safer
than standard implementation architectures. Its use how-
ever must be integrated with a global systems engineering
approach as the process of incremental development and
modeling is as important as using the formal model checker
itself. The use of formal modeling has resulted in many
improvements of the RTOS properties.
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