

Manual & User Guide
Version 2.05

Open Visual Environment
Version 1.3

OpenComRTOS Host Servers
Version 0.2

Open Visual Environment - Manual & User Guide

[2]

Table of contents
1. Chapter 1 - Introduction ... 3

1.1. Introduction .. 3
1.2. System Requirements .. 3
1.3. Open License Agreement .. 3
1.4. Tools used for the OpenVE development ... 4
1.5. Installation procedure... 4

2. Chapter 2 – the OpenVE User Interface .. 8
2.1. Introduction .. 8
2.2. Main Window at start ... 8
2.3. Workspace structure .. 9
2.4. Main Menu and Toolbars ... 10
2.5. Zoom Bar ... 12
2.6. Topology diagram .. 12
2.7. Application diagram ... 13
2.8. Source Code Editor .. 14
2.9. Navigation panels and Properties window .. 15
2.10. Output window .. 16
2.11. Options Dialogue ... 16
2.12. Project Settings Dialogue .. 17

3. Chapter 3 - Working with OpenVE Projects ... 18
3.1. Introduction .. 18
3.2. Creating a new OpenVE Project ... 18
3.3. Opening an existing Project ... 18
3.4. How to add a new source file to a project.. 19
3.5. How to add an existing source file or lib to a project 19
3.6. Structure of the Project Data Folders .. 20

4. Chapter 4 - Developing a simple OpenComRTOS application 21
4.1. Introduction .. 21
4.2. Creating a new Project ... 21
4.3. Defining the Topology of the System .. 21
4.4. The Minimal OpenComRTOS application .. 23
4.5. Adding an Application Task ... 24
4.6. Creating a Port Entity. .. 26
4.7. Specifying Interactions ... 27
4.8. Building, Running and Stopping a Project .. 28
4.9. Using a Port Entity to transfer data between tasks 28
4.10. The Return Values of OpenComRTOS Services 31
4.11. Extending the Example to run on multiple Nodes 32

5. Chapter 5 - Host Services in OpenComRTOS ... 35
5.1. Introduction .. 35
5.2. General Principles of OpenComRTOS Host Services 35
5.3. Stdio Host Server .. 35
5.4. Graph Host Server ... 35

6. The list of Figures .. 36
Appendix A ... 37
Appendix B ... 37
Appendix C ... 37

Open Visual Environment - Manual & User Guide

[3]

1. Chapter 1 - Introduction

1.1. Introduction

The Open Visual Environment (OpenVE) was designed to help software engineers to
implement applications for Open Communication Real Time Operating System

(OpenComRTOS). OpenComRTOS is a network-centric real time operating system
for embedded systems.

OpenComRTOS supports systems from single processors with little available

memory (5—10 kB) to systems consisting of multiple processors of different types
with large amounts of memory, so called heterogeneous systems. Due to

OpenComROTS's Virtual Single Processor programming model the application logic
does not need to be changed when the underlying system changes.

This manual describes how to use the Win32 based version of OpenVE. By default

the Win32 OpenVE installation contains the Win32 version of OpenComRTOS, which
allows to create OpenComRTOS application executable on MS-Windows systems.

OpenComRTOS for other processor types can easily be integrated into this system.

This Manual & User Guide describes the Open Visual Environment of version

1.3.3.5

1.2. System Requirements
Software:

 Microsoft Windows ® XP or later.

 MinGW tool-chain, version 5.1.6 or later.
 CMake cross-platform system for build automation, version 2.6.0 or later.

Hardware:

 Pentium 1 GHz or higher.
 128 MB RAM or higher.

 100 MB free hard disk space.

1.3. Open License Agreement
OpenVE is licensed under a so-called ―Open License‖ besides a standard ―binary‖
license. A binary license is a standard ―right to use‖ license of the software on a

given host station where the applications are developed for a given target system
or processor type.

A full Open License also includes all source code, design documents, formal and
informal models, test suites, etc. Such an Open License can be used to resell or

provide binary licenses of the OpenVE. No runtime royalties are due for the use of
the software in applications.

More information see at: www.OpenLicenseSociety.org and www.Altreonic.com

http://www.openlicensesociety.org/
http://www.altreonic.com/

Open Visual Environment - Manual & User Guide

[4]

1.4. Tools used for the OpenVE development

IDE

Microsoft Visual Studio 2008
Programming language

Microsoft Visual C++

Libraries

Qt 4.5.2 (http://qt.nokia.com/)

1.5. Installation procedure
This procedure describes the installation of the Windows version of OpenVE.

1. Install MinGW (http://mingw.org) into its default folder ―C:\MinGW‖.

2. In the component selection screen (Figure 1-1) select to install ―MinGW Make".

This component is an essential part of the OpenComRTOS build system.

Figure 1-1. The MinGW installer component selection

3. Add the path of MinGW binaries to the System Search Path of MS-Windows:

http://mingw.org/

Open Visual Environment - Manual & User Guide

[5]

 Open the System Properties (by right click on ―My Computer" and select

―Properties") – see Figure 1-2.

Figure 1-2. Opening the System Properties Dialogue

 In opened window select the tab ―Advanced", in which click on the ―Environment

Variables" button, see Figure 1-3.

Figure 1-3. Opening the Environment Variables Dialogue

 In the list box ―System Variables" select the variable ―Path" and click on the
button labelled ―Edit" (you can also double click on the list entry), see Figure 1-4.

Open Visual Environment - Manual & User Guide

[6]

Figure 1-4. Opening the Dialogue to modify the variable Path

 In the dialogue ―Edit System Variable" (see Figure 1-5) add the following to the

end of the ―Variable value‖ Edit Field: ―;c:\MinGW\bin".

Figure 1-5. Modifying the value of the path variable

4. Install CMake system (http://www.cmake.org).

5. In the screen ―Install Options" select ―Add CMake to the system PATH for all
users" (see Figure 1-6). This adds the CMake binary directory to the System Search

Path, which is necessary in order for the OpenComRTOS build system to be able to
use CMake.

Figure 1-6. Adding CMake to the System Binary Search Path

3. Run the OpenVE-<version number>.msi installer.

4. In the OpenVE installer window you have to accept the license agreement, select
features to be installed and press ―Install‖.

http://www.cmake.org/

Open Visual Environment - Manual & User Guide

[7]

Notes

By default the program will be installed into directory ―C:\OpenVE-

<version_number>‖

The license agreement is included in the \share\doc folder of OpenVE installation.

(OpenComRTOS Open License - Binary only WIN32_ Linux OEM-01 Sept 2008.pdf)

After installation you will find the following folders structure:

Folders Contains

Bin OpenVE and OpenTracer executable files

Examples OpenComRTOS applications samples

Share
OpenVE entity icons (in the icons and the svg folder),
documentation - help and license files

Targets
Supported by OpenComRTOS targets, in default installation -
Win32 OpenComRTOS Metamodel, include files, libraries, and
code generating utilities

Open Visual Environment - Manual & User Guide

[8]

2. Chapter 2 – the OpenVE User

Interface
2.1. Introduction
This chapter introduces the general structure and principles for using the User

Interface of Open Visual Environment.

2.2. Main Window at start
After installation the Open Visual Environment starts with an empty workspace (see
Figure 2-1).

You can create here a new project or open an existing OpenVE project.

Figure 2-1. The main window of OpenVE at start

Note

The visual style of OpenVE depends on the current Windows theme of your PC.

Open Visual Environment - Manual & User Guide

[9]

2.3. Workspace structure

The OpenVE workspace (see Figure 2-2) enables creating new and editing existing

OpenVE projects and supporting documents.

Figure 2-2. The workspace of OpenVE

The OpenVE workspace consists of the following elements:

• the Main Menu gives you access to all available commands;

• the Toolbars give you access to common commands;

• the Zoom-Bar scales the diagram;

• the Tab Sheet allows to switch between multiple different types of documents:

• Nodes diagram --- to visually define the topology of the Processor Network.

• Application diagram --- to visually define the RTOS based application structure.

• Source Code Editor --- to manipulate source code.

• the Navigation Panels:

• Files tree window --- displays all OpenVE project folders and files;

• Nodes tree window --- displays nodes and the mapped entities;

• Entities tree window --- displays all entities grouped by type.

• the Properties window --- shows and allows to edit the attributes of a selected

entity, the attributes can be sorted according to their Name or their Value.

Open Visual Environment - Manual & User Guide

[10]

• the Output window and Error list --- the Output window displays system

messages (warning and errors of compilation, information of generation tools). It
includes a dedicated Error list which only displays error and warning messages in a

tabular format.

2.4. Main Menu and Toolbars

The Main Menu gives you access to all OpenVE commands.
The Toolbars gives you access to common OpenVE commands.

OpenVE has the following toolbars:

 standard;
 build;
 topology;

 application.

Notes

1. All toolbars are dockable. To dock or undock a toolbar, click on its delimiter and

drag it.

2. To show or hide Standard or Build toolbars select the corresponding sub-item in
the ―View -> Toolbars‖ main menu item.

3. Topology and Application toolbars are case sensitive and appear when the
corresponding diagram becomes active.

Standard Toolbar and the corresponding Main Menu Items

Command Meaning

New Project Open the wizard for creating a new project

New File Open a dialog for creating header (*.h) or c source code
(*.c) file on the base of predefined in Metamodel

templates

Open Project Show a standard Windows dialog to open an existing

OpenVE project

Save Save current document. Active if only one of OpenVE

project files was changed

Save All Save all opened and changed documents

Close Close current document (the same as click on close
button on tab sheet)

Close Project Close all opened documents and the project

Recent projects List of recently opened projects

Exit Exit OpenVE

Undo Undo the last command. Note, some commands like a file
deletion cannot be undone

Redo Redo the last command

Cut Cut the selected text

Copy Copy the selected text

Paste Paste the selected text

Open Visual Environment - Manual & User Guide

[11]

Delete Delete the selected text or entity on a diagram

Select All Select the all text in the opened text editor

Options Open the Options window (see Figure 2-11)

Project Settings Open the Project Settings window (see Figure 2-12)

Show Node Diagram Shows the Node Diagram when hidden

Show Application

Diagram

Shows the Application Diagram when hidden

Toolbars Shows the Standard or Build diagram when hidden

Find Find a substring in document

Replace Replace a substring in document

Help Show this manual

About Show information about OpenVE

Build Toolbar and the corresponding Main Menu Items

Build Build the current OpenComRTOS Project

Run Build and run OpenComRTOS executables

Stop Stop all launched from OpenVE processes

Clean Delete all files and folders generated during the build

process

Topology toolbar

Arrow Sets the Topology or Application Diagram into the editing
mode

Node Creates a node of chosen type on the Topology Diagram

Links or Creates a link (of unidirectional or bidirectional kind)

Application Toolbar
The structure of the application toolbar depends on chosen RTOS Metamodel

 Creates a Task

 Creates an Event Hub

 Creates a Semaphore Hub

 Creates a Resource Hub

 Creates a FIFO Hub

 Creates a Memory Pool Hub

 Creates a Port Hub

Create a Stdio Host Server

Create a Graphics Host Server

 Creates an Interaction between entities

Open Visual Environment - Manual & User Guide

[12]

2.5. Zoom Bar

Allows scaling the Application or Topology diagram for a more detailed view.

2.6. Topology diagram

Figure 2-3. Using Topology Diagram

A topology diagram defines the network topology of a processor network. It is

consists of Nodes (Processing Entities) and Links (Communication links between
individual Nodes). There can be more than one link between individual nodes. Links

can be either unidirectional or bidirectional.

Thus the base graphical Entities of the Topology diagram are:

1. Nodes, graphically represented as an icon together with the name of the node

e.g. .

2. Links, represented by a line between two nodes, with one (unidirectional link)

or two arrow heads (bidirectional link) connecting two nodes.

Open Visual Environment - Manual & User Guide

[13]

2.7. Application diagram

Figure 2-4. Using Application Diagram

An OpenComRTOS application consists of Task and Hubs (i.e. Ports, Events, FIFOs

etc.). Tasks do not communicate directly but always utilize an intermediate Hub. In
the application diagram the developer models these interactions graphically. The
diagram consists of the following elements:

Thus the base graphical entities of the Application diagram are:
1. Entities (Task, Port, Event, FIFO, Packet Pool, Memory Pool, Resource,

Semaphore) which are graphically represented by the nodes of the graph (e.g.

).

2. Interactions. The edges of the graph represent calls of the tasks to the kernel

services. The type of service is indicated by a service name placed over the edge

(e.g.).

Using the Application diagram to build an application

 To create an Entity (e.g. Task, Port etc.) click on the appropriate button on the
Application toolbar.

 To create an Interaction between entities (e.g. L1_SignalSemaphore_W)
draw a link by clicking with the mouse first on a source entity and then release it
on the target entity.

Note

The interaction type depends on the start point of the interaction: starting on a
task entity and release on a hub entity will generate the put type of interaction
(e.g. L1_PutPacketToPort_W), starting on the hub entity – the get type (e.g.

L1_GetPacketToPort_W) will be generated.

 Select the required interaction from the drop down menu, press Ok.

 Add needed function parameters, declarations and operators in the opened text
editor.

 To change the scale of a diagram use the Zooming Tool.

Relation of the Application diagram with other modules of OpenVE
Changing the Application diagram results in the following changes in the project:

Open Visual Environment - Manual & User Guide

[14]

 Upon adding a Task to the application diagram the Task Entry Point gets added

to the list of tasks of the Node this Task is mapped.

 When adding an Interaction to a Task, the corresponding C function call is

automatically added to the Task Entry Point source code.

 The arrangement of the Entities on the Application diagram is saved in the

project map file.

 All Entities that are mapped on a Node are shown in the Nodes tree view.

2.8. Source Code Editor
The Application Diagram describes an OpenComRTOS application as a set of

Interacting Entities. The behavior of a task between two interactions are defined by
the using the Source Code Editor, which supports the C programming language.

Some parts of the source code are inserted generated automatically from the
graphical representation in the Application diagram:

 For each new Task Entry Point, created in the Application Diagram, the
corresponding C file will be created.

 Each added Interaction in the Application diagram results in the corresponding C

function call to be inserted into the Task Entry Point.

The text editor has its own set of supported actions:
 Lines numbering.
 Vertical and horizontal text scrolling.

 Copy and Paste
 Undo/Redo text function.

 Syntax highlighting for the C programming language.

Open Visual Environment - Manual & User Guide

[15]

2.9. Navigation panels and Properties window

The Navigation panel group includes: Files, Nodes and Entities tree views.

Figure 2-5. Files tree view

Figure 2-6. Nodes tree view

This window shows the files tree and
gives you access to the project files and
folders. Double-clicking on a c, h,

makefile, and project file in the tree-
view window opens it in the tab sheet.

This window shows the nodes tree with
all mapped kernel entities. Double-
clicking on a node or a kernel entity

shows its attributes in the Properties
window.

Figure 2-7. Entities tree view

Figure 2-8. Properties window

This window shows all kernel entities

grouped by type. Inside each group
entities are sorted by name. Double-

clicking on a kernel entity shows its
attributes in the Properties window.

This window shows the entity properties

and allows a user edit the attributes of a
selected kernel entity, node or link.

Properties window allows attributes
sorting by name and value

Open Visual Environment - Manual & User Guide

[16]

2.10. Output window

Figure 2-9. Output window

The output window shows the output generated by the tools used while building the
project, among other messages it shows: warnings and errors generated by the

compiler and linkers.

The error and warning messages are also shown in the Error list, which is part of

the Output window. Double clicking on a message in the Error list will bring you to
the source code location reported by the tool as the origin of the error (see Figure

2-10).

Figure 2-10. Warning of OpenVE project compilation

2.11. Options Dialogue

To change the default options of OpenVE use the Options dialogue, it is available in
the Menu bar under Tools -> Options. The following options can be changed here
(see Figure 2-11):

User Interface:
 Startup Behaviour--- Load last Project or start with an empty workspace;

 Automatically save all files before building.

Editor:
 Font to use;

 Highlight detected Errors in the Source code.

Compile / Build System:

 Make program to use;
 Default location where new projects should be created.

Open Visual Environment - Manual & User Guide

[17]

Figure 2-11. Options window

2.12. Project Settings Dialogue

The Project Settings Dialogue is used to define which OpenComRTOS Kernel image

to use for the project (rtosDir). The dialogue is available in the menu bar under
Edit -> Project Settings (see Figure 2-12).

Figure 2-12. Project settings window

Open Visual Environment - Manual & User Guide

[18]

3. Chapter 3 - Working with OpenVE

Projects

3.1. Introduction
This chapter explain the possible operations on OpenVE projects. It starts by

explaining how to create a new project in 3.2. Section 3.3 then details how to open
an existing project. How to add a new source file to a project is the subject of

Section 3.4. Section 3.5 explains how to integrate already existing C files and
libraries into a project. Finally an explanation of the general structure of an OpenVE
project on the file system is given in 3.6.

3.2. Creating a new OpenVE Project
To create a new OpenVE Project:

 Click on New Project in either the menu or the toolbar.
 Enter the Name of the project (note, you cannot write spaces in the project

name).
 Choose the OpenComRTOS kernel directory to use for the project (by default

it‘s the \targets folder inside your OpenVE installation).

 Select the Location where the new project will be created in (note, by
default OpenVE uses a project name as a name for the project folder).

 Click Finish.

Figure 3-1. Dialog window of a new project creation

3.3. Opening an existing Project
To open an already existing project you have two possibilities:

 In the File menu click Open Project (or use shortcut: Ctrl+O). Browse your
local folders for the project you wish to open and click on OK.

 You can also use the Recent Projects list in the Main menu.

Open Visual Environment - Manual & User Guide

[19]

3.4. How to add a new source file to a project
To create and add a new file to the current project follows these steps:

1. In the File menu (File -> New -> New File) or toolbar click New File
(or use shortcut: Ctrl+N).

2. In the dialog window (see Figure 3-2) select the file type (c or h file) and

enter a file name (e.g. source.c).

Figure 3-2. Dialog window of a new file creation

3. Click on Finish. A new file will be added to your project in the Source folder.
Next you can manage the file by the Files tree-view.

Please note that this file has not yet been assigned to any Node, thus it will not be
compiled. How to associate this file to a Node for compilation is explained in the

next section.

Note

For creation of the h file an empty template is used.

For creation of the c file is used template given at Appendix A.

The Node file with definition of the main function is created automatically when we
place a Node on topology diagram (the template given at Appendix B).

3.5. How to add an existing source file or lib to a project
To add an existing source file or lib follows these steps:

1. Do the right mouse click on a node on the Topology diagram to open a node

context menu.

2. Choose from the context menu the Add File or the Add Lib option (see Figure
3-3).

Open Visual Environment - Manual & User Guide

[20]

Figure 3-3. A node context menu

3. Specify in the opened dialog the file or the lib name.

3.6. Structure of the Project Data Folders

This is the folder where all current project files are stored.

Files and folders Meaning

Configuration folder This folder stores all files of the current project

configuration (with map and system extensions)

Output folder This folder stores the generated files and compiled

executables

Source folder In this folder the source files of the project are stored

Project file The OpenVE project file with the .ove extension.

Open Visual Environment - Manual & User Guide

[21]

4. Chapter 4 - Developing a simple

OpenComRTOS application

4.1. Introduction
This chapter explains all necessary steps to create a simple OpenComRTOS

application. Starting from creating a new project in the Section 4.2 over the
creation of a topology for the system in the Section 4.3, towards the application

logic itself in the Section 4.4. This chapter closes by explaining how to build and run
the application in Section 4.5.

4.2. Creating a new Project

To create a new project with OpenVE do the following:

1. Start OpenVE, either by using the shortcut or launch the executable file directly.

2. Create new project, following the instructions given in the Section 3.2 (for
instance with the Example name).

Figure 4-1. Folders structure of an Example project

Together with project file (here Example.ove) the application configuration file

(here Example.system) file will be created.

4.3. Defining the Topology of the System

Any OpenComRTOS application requires at least one Node1, to create a node follow
these instructions:

1. Activate the node button on the Topology Toolbar by pressing it and click with

mouse pointer on the Topology Diagram to add a new node.

2. In the New node dialogue that opens (see Figure 4-2), specify the node name
(e.g. Win32Node1), compiler (e.g. mingw32-gcc), and check the other node

attributes. KernelPacketPoolSize and RxPacketPoolSize properties are needed for
MP type of project (with default value set in 2 and 21 correspondingly).

1 Node – a processing device in a network containing CPU and with local memory and

periphery

Open Visual Environment - Manual & User Guide

[22]

Figure 4-2. New node window

Notes

You may need to check the full path to compiler by the browse button, e.g. for the

Windows type of node C:\MinGW\bin\mingw32-gcc.exe.

After a Node creation it can be found in the Nodes tree view (see the left panel on
Figure 4-3)

All nodes attributes can be further modified in the Properties inspector (see the
right panel on Figure 4-3)

Figure 4-3. Specification of attributes of a node in the properties inspector

Notes

Setting debugopt into 1 (scheduling and Hub interactions) or 2 (scheduling, Hub
interactions, task service requests) will enable the node to collect the execution
trace. This execution trace can be written onto a disk using the StdioHostService

function DumpTraceBuffer() and will be stored in a file with the name:

Open Visual Environment - Manual & User Guide

[23]

opencomrtosNode<Num>.trace These files can be opened using Open Tracer
(see the Open Tracer manual).

You can change a size of generated trace file by setting the traceBufferSize value
for Node in the Properties Window.

4.4. The Minimal OpenComRTOS application
Your OpenComRTOS project should have at least the main function calling the
L1_runOpenComRTOS function (the definition of this function is given in the
L1_api.h):

int L1_runOpenComRTOS (int NodeNumberOfTasks, int NodeNumberOfHubs);

In the L1_node_config.h the number of tasks and hubs2 per node are defined as
constants, e.g.:

#define L1_NODE_NUMBER_OF_TASKS 2
#define L1_NODE_NUMBER_OF_HUBS 0

Note

The minimal L1_NODE_NUMBER_OF_TASKS is 2: i.e. for the kernel and idle task.

At the moment you press Ok in the New node window (see Figure 4-2) OpenVE

automatically create the Node folder and file with the Node name (Win32Node1.c in

our example):

/* Created <Date> <Time> <Year> */

#include <L1_api.h>

#include <L1node_config.h>

int main(void)

{

return L1_runOpenComRTOS(L1_NODE_NUMBER_OF_TASKS,

L1_NODE_NUMBER_OF_HUBS);

}

You can already build and run your minimal OpenComRTOS application.

You can already build and run your minimal OpenComRTOS application. Press the

Run to build and start the OpenComRTOS on the node, which was defined on the
Topology Diagram. Note, however that because there are no application tasks the

resulting program will only idle.

Note

Before doing a Build OpenVE automatically save all files in the project.
At a first project compilation OpenVE will show notification window

Explore the file structure of your Example project using the Files Tree View (see
Figure 4-4).

2 Hub is the generalized concept of OpenComRTOS kernel entity.

Open Visual Environment - Manual & User Guide

[24]

Figure 4-4. Project files structure after compilation

 In the Source folder there is a Node folder for each node, it has the same name
as the Node (here Win32Node1).

 The Node folder contains the Node Entry Point, which is the C file with the main()
function. This file has the same name as the Node (here Win32Node1.c).

 Within the Output directory the code generator have generated additional files
which are used to configure and build the OpenComRTOS application.

4.5. Adding an Application Task
An Application Task is an active entity in OpenComRTOS. To create and add a new

Application Task to the project follows these instructions.

1. Click on the Task button in the Application toolbar and then click on the
Application diagram.

2. In the New Task creation dialogue (see Figure 4-5) you have to specify the Node
which executes this task.

Note

You cannot create any kernel entity (e.g. Task or Port) if you have not created at

least one node before.

3. Specify the name of the Task (for example Task1).

4. You should also specify (or change set by default) other Task attributes.

Note

Priority 1 is the highest and reserved for the Kernel Task, 255 is the lowest and

Open Visual Environment - Manual & User Guide

[25]

reserved for the Idle Task. Higher priorities (e.g. 2, 3 etc.) are used for driver
Tasks. Application tasks priorities should have a lower priority than the driver
tasks.

For Nodes of type Win32 a stack size of 170 is acceptable. For nodes of other type
please refer to the documentation provided with the Kernel Image.

5. Choose an Entry Point of a Task from the EntryPoint drop-down list (if the

EntryPoint was already defined in the source code) or press the plus button

to create a new Entry Point.

Figure 4-5. New Task creation wizard

6. Enter the Entry point of a c function (in our example – Task1EntryPoint see

Figure 4-6) and click the Next button (note, for Entry Point creation will be used

the template from the Metamodel.template file – see Appendix C).

Figure 4-6. New Entry Point creation wizard

7. Click on Finish and a new file with the name entered in the New Entry Point

creation window will be added in the source folder of your project (see Figure

4-7).

Open Visual Environment - Manual & User Guide

[26]

Figure 4-7. Generation of the entry point from template

8. The template of an Entry Point (here Task1EntryPoint) is inserted in the source

file (here Task1EntryPoint.c).

4.6. Creating a Port Entity.

Change to the Application diagram and click on the Port button , then click on the

Application diagram to add the Port. In the dialogue you have to specify the name

of the Port and the Node where the port will be located (see Figure 4-8). To create

the port click on OK.

Figure 4-8. New Port Creation Window

Note

You can change the attributes of any OpenComRTOS entity later using the

Properties window.

Open Visual Environment - Manual & User Guide

[27]

4.7. Specifying Interactions

To specify an interaction follow these steps:

1. Press the Interaction button on Application diagram toolbar.

2. Connect using the mouse Task and Port icons on the Application diagram (see

Figure 4-9).

3. In the drop-down list choose the required interaction between the selected

entities (for example L1_PutPacketToPort_W - see Figure 4-9). Note, the

allowable for the Entity interactions depend on Metamodel.

Figure 4-9. Specifying Interaction between Entities

4. The selected interaction will be placed at the end of the EntryPoint (here
Task1EntryPoint) of the corresponding Task (here Task1) - see Figure 4-10.

Figure 4-10. Generation of interaction

5. Use the text editor to correct the automatically generated text (here e.g. you
should place L1_PutPacketToPort_W inside the while(1) operator). Some

functions (like _WT) require additional parameters that you have to add
manually, refer to the API manual for this information.

Open Visual Environment - Manual & User Guide

[28]

Note

The text of an Interaction and its visual representation (i.e. the connecting Tasks

and Hubs arrow) is automatically synchronized.

If you‘ve made an error in the source code OpenVE cannot understand it and thus
not include it in the Application Diagram.

6. To construct the minimal correct OpenComRTOS application you should add a
Task2 (with e.g. Task2EntryPoint entry point) following all described above steps

and specify L1_GetPacketFromPort_W interaction. Correct OpenComRTOS
application in our case means corresponding to the interaction symmetry

principle: if you put a packet to a port you should also get it from there.

Note

All tasks in OpenComRTOS interact only through special synchronization entities –

Hubs (see Figure 4-11).

Figure 4-11. Interaction via intermediate entity - Hub

4.8. Building, Running and Stopping a Project
To build the project and then run it follow these steps:

1. Click on Build in the Main menu. The application configuration c and h files

will be generated in the Output folder. OpenVE will generate the Makefile in the

project folder and call MinGW make. MinGW compiles all source files and links
them with libraries in executable images with the node names.

2. Press Run button or the menu item to compile and run the executable files
of your project.

3. After exploring your first OpenComRTOS application don‘t forget close all

applications lunched by OpenVE. For this purpose you can use the stop

button.

4.9. Using a Port Entity to transfer data between tasks

A packet in OpenComRTOS consists of two parts: the header and the payload.

Section 4.8 explained how to utilize a port to synchronies two tasks. A data transfer

can be considered a side effect of synchronizing on a Port.

To transfer data using a Port all that has to be done is to write the data into the

payload of the RequestPacket of the task (L1_CurrentTaskCR-> RequestPacket ->
Data) and then set the datasize (L1_CurrentTaskCR -> RequestPacket -> DataSize)
of the packet to the number of bytes that should be transferred (maximum datasize

is 32 byte).

The following guides you through the steps to extend the existing example to utilise

the Port to exchange data between two tasks:

Open Visual Environment - Manual & User Guide

[29]

1. To simplify the access to the RequestPacket of the task, add the following line to

the Task Entry Points: Task1EntryPoint and Task2EntryPoint.

L1_Packet *Packet = L1_CurrentTaskCR->RequestPacket;

2. In this example we want to transfer only a single byte thus we set the data size
of the Packet to 1, using the following line:

Packet->DataSize = sizeof(L1_BYTE);

3. To transfer the letter ‗a' we have to insert it into the first byte of the Packet
payload:

Packet->Data[0] = ‘a’;

4. Upon synchronization with Task1, the payload will be in RequestPacket of Task2.

Thus the following snippet can be used access it:

Packet->Data[0];

5. In OpenComRTOS Applications the use of the stdio functions to access the

console (printf, scanf) is discouraged. Instead we provide a special
StdioHostService which provides similar functionality (see Chapter 5 - for more

information regarding this). For now simply add a StdioHostServer to the
application diagram, and call it: StdioHostServer1.

6. With the Stdio Host Server being a shared resource between two tasks, it is

necessary to guard it against concurrent access. For this purpose add a Resource
to the Application diagram and call it: Resource1.

7. Modify the two Task Entry Points: Task1EntryPoint and Task2EntryPoint
according to the following listings:

void Task1EntryPoint(L1_TaskArguments Arguments)

{

L1_BYTE ch;

L1_Packet*Packet = L1_CurrentTaskCR->RequestPacket;

for(ch='a'; ch<='z'; ch++)

{

Packet->DataSize= sizeof(L1_BYTE);

Packet->Data[0] = ch;

L1_PutPacketToPort_W(Port1);

L1_LockResource_W(Resource1);

Shs_putString(StdioHostServer1, "Task1 put the letter ");

Shs_putChar(StdioHostServer1, ch);

Shs_putString(StdioHostServer1, " to the Port1\n");

L1_UnlockResource_W(Resource1);

}

}

Open Visual Environment - Manual & User Guide

[30]

void Task2EntryPoint(L1_TaskArguments Arguments)

{

L1_BYTE i, ch;

L1_Packet*Packet = L1_CurrentTaskCR->RequestPacket;

for(i='a'; i<='z'; i++)

{

Packet->DataSize= sizeof(L1_BYTE);

L1_GetPacketFromPort_W(Port1);

ch = Packet->Data[0];

L1_LockResource_W(Resource1);

Shs_putString(StdioHostServer1, "Task2 get the letter ");

Shs_putChar(StdioHostServer1, ch);

Shs_putString(StdioHostServer1, " from the Port1\n");

L1_UnlockResource_W(Resource1);

}

}

8. After example compilation and starting you will see the next console window
output (Figure 4-12):

Open Visual Environment - Manual & User Guide

[31]

Figure 4-12. Send-receive packet with via Port (SP)

4.10. The Return Values of OpenComRTOS Services

All functions of the OpenComRTOS API have a return value which should be
checked to guarantee the correct functioning of the application.

There are three different return values possible, but not all functions do return all

different types:

 RC_OK: The service completed successfully;

 RC_FAIL: The service failed to complete;
 RC_TO: The timeout expired. This only occurs when using services which

can timeout, the postfix `_WT' indicates such a service.

Open Visual Environment - Manual & User Guide

[32]

Modify call to L1_PutPacketToPort_W and L1_GetPacketFromPort_W in

example in such a way:

if (RC_OK == L1_PutPacketToPort_W(Port1))

{

…

}

if(RC_OK == L1_GetPacketFromPort_W(Port1))

{

…

}

In between { } brackets put the code, was defined in previous section.

4.11. Extending the Example to run on multiple Nodes

To develop Multiple Processers project you must extend the topology with a second
Node and set a link between the two nodes:

1. Add an additional node to the topology with Win32Node2 Name (as was

described in the section 4.3).

2. Add to each node a link port:

 Right click on the Win32Node1 and select from the context menu the ―Edit Link
Ports‖ item.

 Choose from drop-down menu the tcp type of link and press the plus button (see

Figure 4-13).

 Specify attributes of the newly created link port. The attributes you can modify

are the name and the port number of the socket. In this example it is only
necessary to modify the name of the port, set it to socket1 (see Figure 4-14).

Figure 4-13. Create a link port of a node

Open Visual Environment - Manual & User Guide

[33]

Figure 4-14. Specification of a link port attributes

3. Repeat the step 2 to define link port of the Win32Node2 node.

4. Connect the two Nodes using a bidirectional link.

 Activate the button on the Topology Toolbar to select the bidirectional link
type.

 Connect two nodes by clicking with the mouse first on a source node and
then release it on the target node.

 In the opened dialog specify endPoint1 and endPoint2 (see Figure 4-15).

Figure 4-15. Specification of NetLink between nodes

Note

Any Node should have an incoming and an outcoming link. If a Node can't reach
another node the build process will fail.

5. To execute Task2 on Win32Node2, modify the Node it is mapped to using the
properties inspector (see Figure 4-16).

Open Visual Environment - Manual & User Guide

[34]

Figure 4-16. Setting the Node property for a Task

6. For best performance of your MP application you can specify for
RxPacketPoolSize and KernelPacketPoolSize bigger values then given by default.

7. Add on application diagram additional Stdio Host Server and set the name as

StdioHostServer2. Map StdioHostServer2 on the Win32Node2.

8. Modify the entrypoint definition of Task2 in order the output goes into

StdioHostServer2.

Shs_putString(StdioHostServer2, "Task2 get the letter ");

Shs_putChar(StdioHostServer2, ch);

Shs_putString(StdioHostServer2, " from the Port1\n");

9. Press Run button or the menu item to run the executable files of your

project. Figure 4-17 represents the results.

Figure 4-17. Send-receive packet with via the Port (MP)

Open Visual Environment - Manual & User Guide

[35]

5. Chapter 5 - Host Services in

OpenComRTOS

5.1. Introduction
This chapter explains how to use the Host Servers provided with OpenComRTOS.

The Host Servers are a component, which allow OpenComRTOS applications to use
services provided by the host operating system. For instance the Stdio Host Server

provides access to the console of a MS-Windows or GNU Linux system, as well as
access to the file system.

Due to the use of the Host Servers these services become available also embedded

targets which very often do not even provide a form of user interface. Thus the
Host Servers make it for instance possible for an embedded ARM node to access the

screen, keyboard, and file system of the Win32 executing the Stdio Host Server.

5.2. General Principles of OpenComRTOS Host Services
 A Host Service consists of a Host Server and a Host Client component, for

application developer only the Host Server component has to be added to the

Application diagram. The build system ensures that nodes accessing this Host
Server include the Host Client component.

 A Host Server component consists of a task and multiple hubs.

 Stdio Host Server and Graphical Host Server components have their own
interactions, which are fully integrated in OpenVE.

 The first parameter of Host Service function is always the Host Server Port of
type L1_HubID, this identifies the Host Server.

 All interactions between a Host Service Client and a Host Service Server use

waiting semantics. This means once a task has committed to interact with the
Host Service Server this task will wait until this interaction has completed.

5.3. Stdio Host Server
The Stdio Host Server provides standard input and output functionality to

OpenComRTOS tasks. This includes file operations.

5.4. Graph Host Server
Graph Host Server supports drawing on Host Server the basic graphics primitives
like line, circle, and string with possibility of color and style settings by an

OpenComRTOS application task.

Open Visual Environment - Manual & User Guide

[36]

6. The list of Figures
Figure 1-1. The MinGW installer component selection ... 4
Figure 1-2. Opening the System Properties Dialogue .. 5
Figure 1-3. Opening the Environment Variables Dialogue 5
Figure 1-4. Opening the Dialogue to modify the variable Path 6
Figure 1-5. Modifying the value of the path variable ... 6
Figure 1-6. Adding CMake to the System Binary Search Path 6
Figure 2-1. The main window of OpenVE at start ... 8
Figure 2-2. The workspace of OpenVE .. 9
Figure 2-3. Using Topology Diagram .. 12
Figure 2-4. Using Application Diagram .. 13
Figure 2-5. Files tree view .. 15
Figure 2-6. Nodes tree view .. 15
Figure 2-7. Entities tree view .. 15
Figure 2-8. Properties window ... 15
Figure 2-9. Output window ... 16
Figure 2-10. Warning of OpenVE project compilation .. 16
Figure 2-11. Options window ... 17
Figure 2-12. Project settings window .. 17
Figure 3-1. Dialog window of a new project creation .. 18
Figure 3-2. Dialog window of a new file creation .. 19
Figure 3-3. A node context menu ... 20
Figure 4-1. Folders structure of an Example project ... 21
Figure 4-2. New node window ... 22
Figure 4-3. Specification of a node attributes in the properties inspector 22
Figure 4-4. Project files structure after compilation .. 24
Figure 4-5. New Task creation wizard ... 25
Figure 4-6. New Entry Point creation wizard .. 25
Figure 4-7. Generation of the entry point from template 26
Figure 4-8. New Port Creation Window ... 26
Figure 4-9. Specifying Interaction between Entities .. 27
Figure 4-10. Generation of interaction .. 27
Figure 4-11. Interaction via intermediate entity - Hub 28
Figure 4-12. Send-receive packet with via Port (SP) ... 31
Figure 4-13. Create a link port of a node .. 32
Figure 4-14. Specification of a link port attributes .. 33
Figure 4-15. Specification of NetLink between nodes .. 33
Figure 4-16. Setting the Node property for a Task ... 34
Figure 4-17. Send-receive packet with via the Port (MP) 34

Open Visual Environment - Manual & User Guide

[37]

Appendix A
C file and Node source files text

/* Created <Date> <Time> <Year> */

#include <L1_api.h>

#include "L1_node_config.h"

Appendix B
Node c source files text

/* Created <Date> <Time> <Year> */
#include <L1_api.h>

#include <L1_node_config.h>

int main(void)

{

return L1_runOpenComRTOS(L1_NODE_NUMBER_OF_TASKS,L1_NODE_NUMBER_OF_HUBS);

}

Appendix C
Task Entry Point template

#include <L1_api.h>

#include "L1_node_config.h"

void Task1EntryPoint(L1_TaskArguments Arguments)

{

while(1){

}

}

