Transparent Programming of Many/Multi Cores
with OpenComRTOS

Comparing Intel 48-core SCC and TI 8-core TMS320C6678

Bernhard H.C. Sputh, Andrew Lukin and Eric Verhulst
Altreonic NV
Gemeentestraat 61A Bus 1; B3210 Linden; Belgium
Email: {bernhard.sputh, andrew.lukin, eric.verhulst} @altreonic.com

Abstract—Developing software for non SMP multi-core sys-
tems such as the 48 core Intel-SCC or the TI-TMS320C6678
is a complex task, and will become even harder with the
emerging heterogeneous multi-core systems combining different
architectures on a single chip. To tackle this issue, Altreonic
has adopted a formalized approach to embedded systems de-
velopment. Of particular interest is the formally developed
OpenComRTOS, that allows one to program distributed systems
ranging from single node microcontrollers, over multi-core to
networks of heterogeneous networked processing nodes, in a fully
transparent way. The current implementation can theoretically
handle 224 nodes. Together with its tools it provides the core of
OpenComRTOS Designer.

This paper reports the results of porting OpenComRTOS to
the Intel-SCC, i.e. code size and performance figures comparing
them with other ports, with a focus on the TI-TMS320C6678.
Furthermore, it describes the basic structure of the OpenComR-
TOS Intel-SCC port, focussing on the inter-core communication.

I. INTRODUCTION

Users of embedded systems continuously expect more fea-
tures. At the same time processors are becoming cheaper
and more powerful. However, user expectations rise faster
than the progress of the hardware. Hence, the evolution to
multi/many-core architectures while being enabled by technol-
ogy advances, is also a solution to achieve more performance
at less energy costs. The question is, how to program them?

OpenComRTOS [1], [2] was designed from the start to
address this issue. Building on the concepts of CSP [3],
Hoare’s Process Algebra and the experience with a previously
developed parallel RTOS (Virtuoso) [4], formal modelling
was used. The top level requirements were to achieve a
transparent concurrent programming model for real-time em-
bedded systems. This was called the “Virtual Single Processor”
programming model. At the API level, a program is composed
of “tasks”, each having a private workspace and priority. Task
synchronise and communicate using instances of “Hubs”. As
such, Hubs are instantiated to the traditional RTOS services
like Events, Semaphores, FIFO, Resources, etc.

OpenComRTOS is build as a scheduler on top of a priori-
tised packet switching and communication layer. It is designed
to run on heterogeneous systems thus a heterogeneous set of
nodes, connected using a heterogeneous set of communication
means (shared memory, fast point-to-point links, or switching

networks). To support this the programming approach sep-
arates the network topology from the application topology,
allowing cross development or simulation on single node
systems (like a PC). Once a program has been developed
its entities (Tasks and Hubs) can be remapped to a different
topology without source code changes. Only a recompilation is
needed and maybe some I/O drivers will need to be modified.
This is achievable because the hubs, used by tasks to interact,
are decoupled from the tasks.

The Intel-SCC [5] is an experimental system which consists
of 48 Pentium cores which are inter-connected over a routing
network. This routing network also connects the cores to
the four on-chip memory controllers, which support up to
64GB of memory in total. Texas Instruments provides the
TMS320C6678 [6], which is a commercially available 8 core
DSP where the cores and the peripherals are interconnected
using a bus called TeraNet. In the following we will refer
to this chip as TI-C6678. In this paper we compare the
performance figures of OpenComRTOS on both architectures.

The rest of the paper is organised as follows, Section II de-
tails the architecture of OpenComRTOS, and how applications
are developed for it. This is followed by the implementation
details of the OpenComRTOS port to the Intel SCC in Section
III. Section IV compares the Intel-SCC port with other ports
of OpenComRTOS. The paper closes with Conclusions and
Further Work in Section V.

II. OPENCOMRTOS PARADIGMS

OpenComRTOS uses the two following paradigms: “Inter-
acting Entities”, discussed in Section II-A and “Virtual Single
Processor” which is discussed in Section II-B.

A. Interacting Entities

OpenComRTOS has a semantically layered architecture.
Table I provides an overview of the available services at the
different levels. At the lowest level the minimum set of Entities
provides everything that is needed to build a small networked
real-time application.

There are two types of Entities in OpenComRTOS: active
and passive Entities. Active Entities are Tasks (having a private
function and workspace), passive Entities are Hubs, used to
synchronise and communicate between Tasks (see Figure 1).

OpenComRTOS-L0
Application View

3
ENGCORENEED
Packet I
f

Receiving a Sending a
Packet Packet

1/O Driver
Task
SR

<Communication Carrien{>
<Hardware Layer (I/O) >

»
' o

Fig. 1. OpenComRTOS-LO view

While there are different types of Hubs in OpenComRTOS,
the most fundamental one is the Port. The Port-Hub acts like
a channel in the sense of Hoare’s CSP, but allows multiple
waiters and asynchronous communication.

One of the Tasks is a Kernel Task which schedules the other
Tasks in order of priority, manages Hub-based services, and
routes Packets. Driver Tasks handle inter-node communication.
Pre-allocated as well as dynamically allocated Packets are
used as carriers for all activities in the RTOS, such as:
service requests to the kernel, Hub synchronisation, data-
communication, etc. Each Packet has a fixed size header and
a data payload with a user defined but global data size. This
significantly simplifies the Packet management, particularly
at the communication layer. A router function transparently
forwards Packets in order of priority between the network
nodes. The priority of a Packet is the same as the priority
of the Task from which the Packet originates, except when
the priority inheritance algorithm changes the priority of the
task after the package was sent.

In the next semantic level Services and Entities were added,
similar to those found in most RTOSs: Boolean events, count-
ing semaphores, FIFO queues, resources, memory pools, etc.
The formal modelling lead to the definition of all these Entities
as semantic variants of the common and generic "Hub” entity.
In addition, the formal modelling also helped to define “clean”
semantics for such services, whereas ad-hoc implementations
often have side-effects. Table II summarises the semantics.

The services are offered in a non-blocking variant (_NW),
a blocking variant (_W), and a blocking with time out variant
(_WT). All services are topology transparent and there is no
restriction in the mapping of Task and kernel Entities onto the
network. See Tables II and III for details on the semantics.

Using a single generic Hub entity leads to more code reuse,
therefore the resulting code size is at least 10 times less
than for an RTOS with a more traditional architecture. One
could of course remove all such application-oriented services
and just use Hub based services. Unfortunately, this has the
drawback that services loose their specific semantic richness,
e.g. resource locking clearly expresses that the Task enters a
critical section in competition with other Tasks. Also erroneous
run-time conditions are easier to identify at application level.

During the formal modelling process, we also discovered
weaknesses in the traditional way priority inheritance is imple-
mented in most RTOSs. Fortunately, we found a way to reduce
the total blocking time. In single processor RTOS systems
this is less of an issue, but in multi-processor systems, all
nodes can originate service requests and resource locking is a
distributed service. Hence, the waiting lists can grow longer
and lower priority Tasks can block higher priority ones while
waiting for the resource. This was solved by postponing the
resource assignment until the rescheduling moment. Finally,
by generalisation, also memory allocation has been approached
like a resource locking service. In combination with the Packet
Pool, this opens new possibilities for safe and secure memory
management, e.g. the OpenComRTOS architecture is free from
buffer overflow by design.

For the third semantic layer (L2), we plan to add dynamic
support like mobility of code and of kernel Entities. A po-
tential candidate is a light-weight virtual machine supporting
capabilities as modelled in pi-calculus [7]. For this purpose
we developed the Safe Virtual Machine [8], which currently
allows to dynamically load and execute tasks.

B. Virtual Single Processor Programming Model

The Virtual Single Processor (VSP) programming model
of OpenComRTOS, provides the user with the ability to
treat a complex network of processors like a single one. An
OpenComRTOS project consists of the following elements,
defined in a graphical modelling environment.

1) Topology — A topology in OpenComRTOS defines the
hardware of the system: processing Nodes, the commu-
nication Links between them and peripherals. Each Node
has an unique name. Furthermore, in the topology the
Node specific settings are defined, such as the compiler
to use, and the configuration of device drivers. At any
time of the development process it is possible to modify
the number of Nodes in the Topology. Thus the user can
start using just one Node, and later on gradually increase
the number of Nodes.

2) Application — Here the user specifies which Entities are
used in the project and what interactions they perform.
Each Entity (Tasks and Hubs) has an unique name in the
system and is mapped onto one Node of the topology.
This mapping can be changed at any time during the
development process, as long as no Node-dependencies
were inserted. A typical node dependency is a Task that
directly accesses peripherals of a specific Node. The

TABLE I
OVERVIEW OF THE AVAILABLE ENTITIES ON THE DIFFERENT LAYERS

Layer Available Entities
LO Task, Hub (instantiated as Port)
L1 Task, Hub instantiated as: Port, Boolean Event, Counting Semaphore, FIFO Queue, Resource, Memory Pool
or user defined
L2 Mobile Entities: all L1 entities are moveable between Nodes.
TABLE II
SEMANTICS OF L1 ENTITIES
L1 Entity Semantics
Event Synchronisation on a Boolean value.
Semaphore Synchronisation with counter allowing asynchronous signalling.
Port Synchronisation with exchange of a Packet.
FIFO queue Buffered, asynchronous communication of Packets. Synchronisation on queue full or empty.
Resource Event used to create a logical critical section. Resources have an owner Task when locked.
Memory Pool Linked list of memory blocks protected with a resource.

TABLE III
SERVICE SYNCHRONIZATION VARIANTS

“WT

Services Synchronising Behaviour
variants
_NW Non Waiting: when the synchronisation fails the Task returns with a RC_Failed.

w Waiting: when the synchronisation fails the Task waits until such event happens.
Waiting with a time-out. Waiting is limited in time defined by the time-out value.

logical behaviour of the system is independent of the
mapping of the Entities, only the latency may change.

The unique name of an Entity is used for addressing the En-
tity in the system. Internally an Entity-ID gets used to interact
with an Entity. This Entity-ID consists of two components:
the global Node-ID, and a local ID, both ID’s get generated
at build time, by the code generators. When remapping an
Entity, to a different Node, the Entity-ID will change, while
the unique name stays the same. This addressing scheme and
the use of Packets to represent Task interactions (service calls),
results in a programming model where the Entities can be
placed anywhere. The OpenComRTOS kernel Task acts as a
switch, sending the Packets to their destination. Note, that the
same mechanism is used for local as well as remote Entities. It
is this packet switching nature of OpenComRTOS that makes
it so scalable. All code is multi-processor by default. Note
also that the user is largely relieved from the tedious effort of
writing all data structures and initialisation routines. This is
largely generated from higher level descriptions and topology
metamodels in the graphical OpenComRTOS Designer mod-
elling environment.

III. PORTING OPENCOMRTOS TO INTEL SCC

Due to its architecture, with a a clean separation between
the HAL (Hardware Abstraction Layer) and the operating
system services OpenComRTOS is fairly easy to port to a new
platform. We have done basic ports (single Node with periodic
timer) to new architectures, such as to the NXP-CoolFlux [9],
and the TI TMS320C6678 [6] within two weeks. The most
difficult part of the porting effort is usually to integrate the
toolchain to compile the code with it. This assumes of course
that adequate documentation and tools are available.

In case of the Intel SCC it took longer than the usual
two weeks due to the experimental nature of the development
support. Nevertheless, even while only having remote access
to the hardware, once the chip’s hardware was understood
and the basic functionality was implemented, development was
straightforward.

A. SCC-Bringup

We use the Bare Michael framework [10] as underlying
library to bring up the individual cores of the Intel-SCC.
Once execution reaches the main () function OpenComRTOS

initialises the Tasks, and starts the communication drivers,
before starting the Kernel-Task.

B. Inter Core Communication

OpenComRTOS is designed to allow the development of
distributed heterogeneous systems. This means that it provides
the capability to build systems consisting of multiple CPUs
interconnected over various communication means, such as
RS232, Ethernet, shared memory and now also the Intel-SCC
Message Passing Buffers (MPB). The communication between
different Nodes of the system is handled by so-called transfer-
packets, which have system wide the same structure. The
transfer-packet consist of a 32 B header and a variable amount
of payload data. When a Task issues a service request to a Hub
that is located on another Node, then the kernel-task routes
the service request packet to the corresponding Link Driver to
transfer it to its destination Node. The routes are precalculated
during the build process and do not change during run-time,
relieving the application from any explicit routing.

In the Intel-SCC each tile, which consists of two cores,
provides a 16 kB large Message Passing Buffer (MPB). In the
link driver implementation we assigned each core of the tile

8kB of this buffer which it uses as an input port for the link
driver. This means that each core reads the messages meant
for it from its part of the MPB. To send a message each
core writes the message directly into the MPB of the core the
message is intended for, i.e. we establish a full mesh on the
Intel-SCC, leaving all the routing decisions to the underlying
routing network. Inside the MPB the data is organised using
a lock free ring buffer implementation, where the writer and
reader task do not need to lock each other out. However, it is
still necessary to prevent that more than one writer tries to gain
access to the MPB in parallel, thus there is one locking oper-
ation involved. The lock is represented by an atomic variable,
and we use the acquire_lock () and release_lock ()
functions, provided by Intel, to manipulate it. Having an RTOS
means that it is necessary to inform the reader core that new
data has arrived, this is achieved by the writer-node issuing an
Interrupt Request (IRQ) to the reader-node, using the function
interrupt_core (). Upon receiving the IRQ, the reader-
node reads out the data, translates the transfer packet into
a local packet and and then passes it to the kernel-task for
processing.

IV. MEASUREMENT RESULTS

OpenComRTOS has been ported to quite a number of
different CPU architectures already. In this section we compare
codesize and performance figures of the Intel-SCC port with
the figures of selected other ports. All measurements with the
Intel-SCC system were done using the following configuration:
core: 533 MHz, memory: 800 MHz, mesh: 800 MHz. To
allow the cache to initialise on the Intel-SCC the first mea-
surement in each of the following benchmarks was ignored.

A. Code Size

Table IV gives detailed code size figures, in byte, for our
currently available ports of OpenComRTOS. The Intel-SCC
port has a typical code size for a 32 bit instruction set
machine, similar to the MicroBlaze, Leon3, XMOS, and TI-
C6678 ports we have done in the past.

B. Performance Figures

Next we consider the runtime performance. Table V states
the elapsed time to perform what we call a semaphore loop
(two task signalling each other in a loop using two semaphore
hubs, [1] gives an explanation, Figure 2 shows the application
diagram). This test gives a very good indication of the latencies
introduced by the OS and gives a good indication of task
scheduling and service request latencies as each loop consists
of 4 context switches, and 4 service requests with a total
of 8 Packet exchanges. The measurements were performed
by measuring the loop time 1000 times, using the highest
precision timer available in the system, in case of the NXP
CoolFlux the cycle counter of the simulator was used. In
all cases we tried to achieve top performance, thus available
caches were utilised. Furthermore, interrupts were disabled,
except the one for the periodic timer tick. The column ‘Context
Size’ of the table gives the number of registers that has to

¥ D
ore_ L1
. na\semaph ~Testse,"aph°
L1_Si9 Node1: re_w

L Semaphorel W

1 ho\'ea

Testsem, ig“a‘semap Nodel:
Node1: Phore (B el:
Taskl = <-|> Task2

Node1l:
Semaphore2

Fig. 2. Application Diagram of the Semaphore Loop Benchmark

be saved and the size of these registers, for a user triggered
context switch. The context saved when handling an interrupt
has a different size.

C. Interrupt Latency Measurements

Another important performance figure, for an RTOS, is
the interrupt latency. We differentiate two types of latencies:
IRQ (Interrupt ReQuest) to ISR (Interrupt Service Routine),
and IRQ to Task. The first one measures how long it takes
after an automatic reload counter issued an IRQ until the
first useful instruction can be performed in the ISR, this
means that all context saving has been performed already.
The IRQ to Task latency represents how long it takes until
a high priority task can perform the first useful instruction
after an IRQ has occurred. However, these are no single
figures because it depends on what the CPU is currently
doing. Thus we collected a few million measurements, and
performed a statistical analysis of them. Table VI gives the
minimal, maximal and the median (50% value of all measured
latencies).

For the Intel-SCC and the TI-C6678 system we presently
have only the minimal figures for an unloaded system. We
have the following interrupt latencies for these platforms:

o Intel-SCC:

— IRQ to ISR: 656.78 ns (349 cycles)
— IRQ to Task: 10.32 us (5501 cycles)

o TI-C6678:

— IRQ to ISR: 136 ns (136 cycles)
— IRQ to Task: 1.37 us (1367 cycles)

Both the Intel-SCC and the TI-C6678 have a larger interrupt
latency, in number of cycles, than e.g. the ARM-Cortex-M3,
however they are clocked at a much higher clock speeds thus
the absolute times are better. However, it is clear that the Intel-
SCC was not designed for realtime applications, unlike a micro
controller such as the ARM-Cortex-M3. The ARM-Cortex-M3
does a lot of the necessary task saving and restoring, as well
as interrupt dispatching operations, using dedicated hardware,
while in case of the Intel-SCC and the TI-C6678 it has all to
be done in software.

A point regarding the TI-C6678: this processor has multiple
cascaded interrupt controllers (for a potential total of about
1000 interrupt sources), which have been taken out of the
equation as we just measured the latency of C66x core internal
interrupt controller, which provides 16 interrupts, of which 12
can be freely used for external interrupts.

TABLE IV
OPENCOMRTOS L1 CODE SIZE FIGURES (IN BYTES) OBTAINED FOR OUR DIFFERENT PORTS

Service MLX16 | MicroBlaze | ESA-Leon3 | ARM Cortex M3 | XMOS | TI-C6678 | Intel-SCC
L1 Hub shared 400 4756 4904 2192 4854 5104 4321
L1 Port 4 8 8 4 4 8 7
L1 Event 70 38 72 36 54 92 55
L1 Semaphore 54 92 96 40 64 84 64
L1 Resource 104 96 76 40 50 144 121
L1 FIFO 232 356 332 140 222 300 191
L1 PacketPool NA 296 268 120 166 176 194
Total L1 Services 1048 5692 5756 2572 5414 5908 4953
TABLE V
OPENCOMRTOS LOOP TIMES OBTAINED FOR OUR DIFFERENT PORTS
Clock Speed | Context Size | Memory Location | Loop Time | Cycles
ARM Cortex M3 50 MHz 16 x 32 bit internal 52.5 us 2625
NXP CoolFlux NA 70 x 24 bit internal NA 3826
XMOS 100 MHz 14 x 32 bit internal 26.8 us 2680
Leon3 40 MHz 32 x 32 bit external 136.1 us 5444
MLX-16 6 MHz 4 x 16 bit internal 100.8 us 605
Microblaze 100 MHz 32 x 32 bit internal 33.6 us 3360
TI-C6678 1 GHz 15 x 32 bit L2-SRAM 4.5 us 4500
Intel SCC 533 MHz 11 x 32 bit external 4.9 us 2612
TABLE VI
OPENCOMRTOS INTERRUPT LATENCIES ON AN ARM-CORTEX-M3 @ L1_PutPacketToPort W L1_GetPacketFromPort W
50MHz
Nodel: Node2: N?dez:
TRQ to ISR TRQ to Task SenderTask Port ReceiverTask
Minimal 300 ns (15 cycles) 12 ps (600 cycles)
Maximal | 2140 ns (107 cycles) | 25 us (1250 cycles) X L .
509, 200 1s (20 cycles) 17 us (850 cycles) Fig. 3. Application Diagram for the Throughput Measurement

D. Inter Core Communication

To measure the application level inter core communica-
tion throughput, i.e. the usable task-to-task bandwidth when
developing an application we performed the following mea-
surements. The benchmark system consists of two tasks:
a SenderTask and a ReceiverTask, communicating using a
Port-Hub. Figure 3 shows the application diagram of the
system. The SenderTask sends an L1-Packet to the Port-
Hub from which the ReceiverTask receives it. The Port-Hub
interactions are done using waiting semantics, which means
that the SenderTask has to wait until the Receiver-Task has
synchronised with it in the Port-Hub. The Port-Hub copies
the payload data contained in the L1-Packet from the Sender-
Task to the L1-Packet from the Receiver-Task, and then sends
acknowledgement packets to both Tasks. We measured how
long it takes the ReceiverTask to receive 1000 times a data
packet of a specific size. To perform the initial synchronisation
the ReceiverTask waits for a first communication to take
place before determining the start time. Please note that the
SenderTask and ReceiverTask synchronise in the Port-Hub,
thus the SenderTask can only send the next packet, after it
has received the acknowledgement packet that the previous
transfer was performed successfully.

1) Intel-SCC: When distributing the Tasks over different
Nodes in the system, the data will be transferred between the
two nodes using link drivers and using the on-chip communi-

cation mechanism. These link drivers translate the L1-Packet
to a Transfer-Packet, and transfer only the used part of the data
part of the L1-Packet. We measured the following different
system setups, with different payload sizes:
o Single-Core: In this setup all Tasks and the Hub are on the
same core. Thus no inter core communication is involved.
o Multi-Core: Afterwards the benchmark was distributed
over two nodes, in the following way:
— Nodel: SenderTask
— Node2: ReceiverTask and Port-Hub
In this setup we measured with different numbers of Hops
(see [5] for details) between the two cores:
— No-Hop: Nodel on core 10 and Node2 on core 11
— 1-Hop: Nodel on core 10 and Node2 on core 8
— 8-Hops: Nodel on core 10 and Node2 on core 36
Figure 4 gives the measured results for the different systems.
What sticks out is that the single core example goes into
saturation at around 20 MB/s, while the distributed versions
achieve a higher throughput of up to 33 MB/s. These figures
are similar to the ones reported by Lankes et. al. in [11].
There is also a strange jump in throughput from payload sizes
128 B to 256 B, for the distributed version, which we do
not observe in the single core version. Furthermore, we see a
strong influence of the routing network which nearly halves
the throughput between the No-Hop and the 8-Hop versions,
thus the location of the Nodes and their distance matters on
the Intel-SCC.

s
o

w
w

h
N

[
[=]

\

—"7’-//!
A | 1
Y /L.

L] _ —

[y
o

Throughput in Megabyte/s
[=]
e

~

[Sa}

;
%

™

Q NN ™ % © S (> S o
R M AN RPN S g
N 970

N]
e)
,]9]
Payload Size in Byte

—=—Core10to 10 —+—Corel10to 11

——Corel0to 8 —+—Core10to 36

—+—\Virtual Core 10 to 11

Fig. 4. Intel-SCC Throughput over Packet Payload Size

The curve labelled ‘Virtual Core 10 to 11’ is moving the
data, by transferring the ownership of a shared buffer from
core 10 to core 11. This is done by transferring the buffer
information (address, size, resource-lock-id) from core 10 to
core 11 using a port-hub. Once core 11 has this information
it locks a resource, to avoid unintentional access, copies the
data, and then releases the lock. The achieved throughput is
about half of what we achieved in the single core version. The
reason for this is that the buffer is placed in shared memory
which halves the achievable throughput. The throughput of
the bare version, i.e. without OpenComRTOS running, just a
main and bare michael, drops from 17.4 MB/s, when copying
from private memory to private memory, to 10.3 MB/s when
copying from shared memory to private memory.

2) TI-C6678: The TI-C6678 evaluation board available to
us was clocked at 1 GHz, thus all measurements were done
at this frequency. Another point to mention is that none of
the DMA units provided by the TI-C6678 have been used for
these measurements, thus the DSP-Core had to spend all its
cycles to move the data.

Figure 5 gives the throughput measurements for the TI-
C6678 @ 1 GHz, for both the single core (‘Core 0 to 0°)
and the distributed version (‘Core O to 1°). A few words
regarding the measurement setup. In case of the single core
measurement, the data and the code where completely within
the 512 kB large L2-SRAM of core 0. This is possible because
the architecture permits to use the L2 cache as SRAM. For
the distributed version we used the Queue Management Sub
System (QMSS) queues [12] to transfer descriptors of transfer
packets between the cores. The queues 652 and 653 were used,
generating an interrupt when data is pending on them. The
shared transfer packets were located in the Multicore Shared
Memory (MSM), constituting 4 MB of fast memory shared
between the cores. This memory is part of the Multicore

3000
w 2500 /
e
a
e /
| 2000
b /
2
'€ 1500 /
=
= s
o /
& 1000
g /) A
0 —otwtwt ol ulate = AlFE == .-
o = &N T 0w N ST 0w o T 0w o s 0
B B o T Y- T SN B T R VR S = B = T - = B T =1
- N N S © O o o M~
L I o IR S~ = V= B o |
— ™M
Packet Payload Size in Bytes
——CoreQto 0 —#Core0to1
===\/irtual Coreto 1, MSM to L2 Virtual Core0Oto 1, L2to L2

Fig. 5. TI-C6678 Throughput over Packet Payload Size

Shared Memory Controller (MSMC) [13], which interfaces
the eight cores to external DDR-SRAM. For the single core
version we achieve a top throughput of 2695 MB/s using
packets with 32 kB payload. The distributed version achieved
a maximum throughput of 1752 MB/s with the same payload.
In both cases we have not yet reached the saturation of the
system, thus the total throughput will be higher, if we increase
the packet payload size.

Like for the Intel-SCC we’ve also implemented a measure-
ment of the virtual bandwidth, using a shared buffer. With a
buffer size of 32 kB we achieved a throughput of 772 MB/s
@ 1 GHz , when the shared buffer is located in the MSM, and
we copied to the L2-SRAM of core 1 (‘Virtual Core O to 1,
MSM to L2’). If the shared buffer is located in the L2-SRAM
of core 0 (“Virtual Core O to 1, L2 to L2’), the throughput we
achieve is 45 MB/s @ 1 GHz. Currently we investigate why
the copy between the L2-SRAM of the cores does provide so
little throughput.

When utilising the experimental driver for the EDMA3
peripherals of the TI-C6678, and EDMA3 unit EMDA3CCO,
we achieve a throughput of 4041 MB/s with a buffer size of
128 kB, transferred between two buffers in the L2-SRAM of
core 0. The advantage of using the DMA unit over using the
CPU for copying or movind data is that during the transfer
the CPU can perform other tasks, thus the transfer happens in
parallel to the processing.

3) Comparing Intel-SCC and TI-C6678: The best achieved
throughput in single core measurements on the Intel-SCC was
with a packet payload size of 4096 B where it achieved
a throughput of 19.80 MB/s @ 533 MHz. The TI-C6678
achieved with the same packet payload size a throughput of
1148.52 MB/s @ 1 GHz. Even if clocked at the 533 MHz
the Intel-SCC this would still be 611.88 MB/s, which is more
than 30 times faster than what we achieve on the Intel-SCC.

For the distributed system version the Intel-SCC throughput
is 33.57 MB/s @ 533 MHz with a packet payload size of

4096 B. The TI-C6678 achieves 512 MB/s @ 1 GHz which
corresponds to 273 MB/s @ 533 MHz.

V. CONCLUSIONS & FURTHER WORK

The first part of this paper introduced the two paradigms
of OpenComRTOS, Interacting Entities, and Virtual Single
Processor, and illustrated how they enable to develop truly
distributed heterogeneous deeply embedded systems. Both
paradigms enable it to build small systems as well as large
systems without having to change the programming model
at all. It is also possible to start with a small system and
expand it over time if the need arises or the other way
around. This is what is meant with the term scalability. Due
to being build around the concept of packet switching the
performance degradation caused by additional middleware
layers are avoided in OpenComRTOS systems. This not only
results in a better performance, but also in smaller memory re-
quirements, and thus less power consumption. The architecture
of OpenComRTOS is ideally suited for the multi/many cores
systems such as the Intel-SCC and the TI-C6678, because it
makes it very easy to use all processing power without having
to worry about the details of the underlying hardware.

What has become clear in the performance measurements is
that both the Intel-SCC and the TI-C6678 are complex archi-
tectures requiring a lot of attention to achieve best performance
and predictable realtime behaviour. The developer must be
very careful in placing data and code in memory and selecting
the communication mechanism. In case of the Intel-SCC the
access to the DDR3 memory has a very long latency with
a minimum of 86 wait states, and is only available over the
system wide shared routing network, which causes additional
wait states. The approach taken in the TI-C6678 with a
dedicated switching network (TeraNet) provides a much better
throughput to the shared memory resources. Additionally, each
core has it’s own 512 kB of L2-SRAM which can be used to
store code and local data, an approach not possible in case of
the Intel-SCC. A local RAM of 512 kB might sound little but
for OpenComRTOS it is more than sufficient, due to its small
code size of around 5 kB. This leaves in many cases sufficient
space for user applications and device drivers.

The tests have also shown that shared memory presents
some pitfalls, similar to the ones global variables represent
in multi-threaded environments. Not only makes it the bus
structure very complex, it also makes it very slow compared
with the speed of the CPUs and it poses more safety and se-
curity risks, e.g. the cache must also be invalidated at the right
time. Therefore, having large and local low wait state memory
for each core with a fast dedicated communication network
set up in a point-to-point topology with DMAs improves
performance, and improves reliability when this memory can
be marked as private to the core, thus preventing external
cores from accessing and potentially corrupting it. This is an
important issue for safety and security critical systems. Finally,
multi/manycore designers should be aware that concurrency
even on a single core combined with low latency is beneficial
as it allows to reduce the grain size of the computations

without suffering much overhead. It also increases throughput
by overlapping computation with communication.

The communication infrastructure provided by the TI-
C6678, with its packetisation and hardware-queue support,
is similar to the internal architecture of OpenComRTOS,
whereby all interactions are implemented using packet ex-
changes.

A. Further Work

While the basic port has been done, the integration into the
OpenComRTOS ecosystem i.e. adapting the code generators
and importing the multi-core topology as a library component
is on-going. In parallel further optimisations are applied. Given
the abundancy of hardware resources on modern multicore
chips, research is focusing on dynamic resource scheduling,
whereby a resource is not just CPU time but can also be
any of the hardware capabilities. This is using an extended
version of the distributed priority inheritance algorithm in
OpenComRTOS.

ACKNOWLEDGEMENTS

The formal modelling of OpenComRTOS was partly funded
under an IWT project of the Flemish Government in Belgium.

The Intel-SCC system we used for development was sup-
plied by Intel Inc, in their data centre.

The TI-C6678 target hardware was provided by Thales.

REFERENCES

[1] Bernhard H.C. Sputh, Eric Verhulst, and Vitaliy Mezhuyev. Open-
ComRTOS: Formally developed RTOS for Heterogeneous Systems. In
Embedded World Conference 2010, March 2010.

[2] E. Verhulst, R.T. Boute, J.M.S. Faria, B.H.C. Sputh, and V. Mezhuyev.
Formal Development of a Network-Centric RTOS. Software Engineering
for Reliable Embedded Systems. Springer, Amsterdam Netherlands,
2011.

[3] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666-677, 1978.

[4] Eric Verhulst. Virtuoso: providing sub-microsecond context switching
on dsps with a dedicated nanokernel. In Proceeding of the International
Conference on Signal Processing Applications and Technology, Santa
Clara, September 1993.

[5] Intel Labs. The SCC Programmers Guide, 2012. http://communities.
intel.com/servlet/JiveServlet/downloadBody/5684-102-8-22523/
SCCProgrammersGuide.pdf.

[6] Texas Instruments. TMS320C6678 Multicore Fixed and Floating-Point
Digital Signal Processor (Rev. C). http://www.ti.com/litv/pdf/sprs691c.

[7] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, June 1999.

[8] Bernhard H.C. Sputh, Eric Verhulst, Artem Barmin, and Vitaliy
Mezhuyev. Safe Virtual Machine for C in less than 3 KiBytes. In
Embedded World Conference 2011, March 2011.

[91 NXP. NXP-CoolFlux Homepage. http://www.coolflux.com/.

[10] The BareMichael framework: http://communities.intel.com/message/
151910.

Stefan Lankes, Pablo Reble, Carsten Clauss, and Oliver Sinnen. Shared
Virtual Memory for the SCC. In Peter Troger & Andreas Polze, editor,
Proceedings of the 4th MARC Symposium, Hasso Plattner Institute for
Software Systems Engineering (HPI) in Potsdam, January 2012. Hasso
Plattner Institute, University of Potsdam, Germany.

Texas Instruments. KeyStone Architecture Multicore Navigator, Septem-
ber 2011. http://www.ti.com/lit/ug/sprugr9d/sprugrod.pdf.

Texas Instruments. KeyStone Architecture Multicore Shared Memory
Controller (MSMC), October 2011. http://www.ti.com/lit/ug/sprugw7a/
sprugw7a.pdf.

(1]

(12]

[13]

http://communities.intel.com/servlet/JiveServlet/downloadBody/5684-102-8-22523/SCCProgrammersGuide.pdf
http://communities.intel.com/servlet/JiveServlet/downloadBody/5684-102-8-22523/SCCProgrammersGuide.pdf
http://communities.intel.com/servlet/JiveServlet/downloadBody/5684-102-8-22523/SCCProgrammersGuide.pdf
http://www.ti.com/litv/pdf/sprs691c
http://www.coolflux.com/
http://communities.intel.com/message/151910
http://communities.intel.com/message/151910
http://www.ti.com/lit/ug/sprugr9d/sprugr9d.pdf
http://www.ti.com/lit/ug/sprugw7a/sprugw7a.pdf
http://www.ti.com/lit/ug/sprugw7a/sprugw7a.pdf

	I Introduction
	II OpenComRTOS Paradigms
	II-A Interacting Entities
	II-B Virtual Single Processor Programming Model

	III Porting OpenComRTOS to Intel SCC
	III-A SCC-Bringup
	III-B Inter Core Communication

	IV Measurement Results
	IV-A Code Size
	IV-B Performance Figures
	IV-C Interrupt Latency Measurements
	IV-D Inter Core Communication
	IV-D1 Intel-SCC
	IV-D2 TI-C6678
	IV-D3 Comparing Intel-SCC and TI-C6678

	V Conclusions & Further Work
	V-A Further Work

	References

