
Eric Verhulst
Open License Society

ALTREONIC

An Interacting Entities
Modeling MethodologyModeling Methodology

For Robust Systems Design

VALID 2010,
Nice 24.08.2010

OpenCookbook is a web-based requirements and
specifications capturing tool supporting a coherent and

An Interacting Entities
Modelling Methodology

for Robust Systems Design

specifications capturing tool supporting a coherent and
unified system development methodology based on the
Interacting Entities paradigm

History
• Original R&D project of Open License Society:

– Metamodel for systems engineering
• “systems grammar”

– OpenSpecs implemented as web portal

• EVOLVE ITEA project
– Evol utionary Validation, Verification and Certification– Evol utionary Validation, Verification and Certification

• ASIL : Flanders Drive project on developing a
common safety engineering methodology
– Why are engineering and safety standards so heuristic?

• Currently commercialised and further productised
by Altreonic under OpenCookBook
– part of Concurrent Systems Composer development

framework

Unified Systems/Software engineering

OpenVE ©

Formalized modelling

Simulation

Code generation

OpenComRTOS ©

OpenCookBook©

Formalised requirements &

specifications capturing

Project repository

User
Applications

Test harness

Modeling

OpenComRTOS ©

Formally developed

Runtime support for

concurrency and

communication

SIL 3/4 Controller ©

Control & processing platform

natively supporting distributed

concurrency & communication

Meta-models

Unifying
Repository

Unified architectural paradigm:
Interacting Entities

Unified
Semantics

OpenTracer ©

Visual Event Tracer

Why FORMAL (ISED) ?

200

250

300

R
el

at
iv

e
C

os
t

Cost structures compared

Base cost Cost of change

Traditional
bottom-up
engineering

Formalised
iterative
engineering

First time right

= Less residual errors

= Higher reliability

= Less costs

Incremental changes
gives Requirements
on process and

0

50

100

150

R
el

at
iv

e
C

os
t

Req
uir

em
en

ts

Arc
hit

ec
tur

e

Des
ign

Im
ple

m
en

tat
ion

Unit
 te

st

In
teg

ra
tio

n

Sys
te

m
 te

st

M
ain

te
na

nc
e

End
 o

f li
fe

Req
uir

em
en

ts

Spe
cif

ica
tio

ns

M
od

eli
ng

Im
ple

m
en

tat
ion

Ver
ific

at
ion

Tes
tin

g

In
teg

ra
tio

n

Vali
da

tio
n

Rele
as

e

M
ain

te
na

nc
e

End
 o

f li
fe

Run-away
cost risk

Testing will only
demonstrate absence
of certain errors.

Formal verification
can prove absence of
any errors.

on process and
architecture

OpenCookBook design goals

• Universality:
– modelling any type of system, i.e. physical, software, hardware

etc. (possibly with heterogeneous parts)

• Scalability:
– support the development from small to very large and complex

systemssystems

• Extensibility:
– possibility to change and to modify the meta-model (based on

system grammar structure of database)

Support for
Systems Engineering Process Activities

– Domain can be diverse:
• technical engineering, organsiation, engineering or

business process, …
• Engineering process will always combine

engineering activities with process flow

– Requirements and specifications capturing– Requirements and specifications capturing
– Defining models and methodologies
– Defining architecture of a system in terms of

interacting entities
– Defining workplan as set of work packages

containing development, verification, test, and
validation tasks

• Using natural language for requirements and
specifications capturing and architecture definitions

• Separation of concerns, concepts hierarchically
decomposed and structured

• Unified repository (database) based on the Systems

OpenCookbook Principles

• Unified repository (database) based on the Systems
Grammar

• Using unified workflow for whole system engineering
process

S
y
s
te

m
 d

e
s
c
r
ip

ti
o

n

Test Cases

Specifications

Normal Cases

Requirement

S
y
s
te

m
 D

e
fi

n
it

io
n

 =
 S

p
e
c
s

Models +
System

General System Definition Process

S
y
s
te

m
 d

e
s
c
r
ip

ti
o

n
Fault Cases

Test Cases

Issues

Conceptual
(intentional)
level

Stakeholders
activity

Requirement

S
y
s
te

m
 D

e
fi

n
it

io
n

 =
 S

p
e
c
s

Models +

Methods
System

Architectural
(extensional)
level

Requirement

Entity
Qualifier

Specification

Entity

Attributes

Relationships between conceptual and
architectural levels of a system under

development (1)

Issue

Failure
Case

Test Case

Task

Entity

Interaction

Interfaces

Functions

Normal Case

Control
Simplicity

Conceptual Level Architectural Level

Relationships between conceptual and
architectural levels of a system under

development (2)

Control
system

Engine

Chassis
Locks

Belts and
pillows

of driving

Device

generating

movement

Soft and easy

movement

Anti-stealing

safety

Safety at

collisions

Architectural

Decomposition

Project

System
description

System
definition

Work
Plan

Work
Package

Requirements
• Normal Case
• Test Case

Models
• Conceptual
• Architectural

Methodology
• Analysis
• Development

OpenCookBook conceptual schema
= project’s state space

Change
Request

Entity
•Subsystem
• Interaction
• Function
• Interface

Package

Task
• Development
• Verification
• Validation
• Test

• Test Case
• Fault Case

Specifications

• Architectural
• Implementation
• Formal
• Simulation

• Development
• Implementation
• Testing
• User Specified

Method
• Procedure
• Tool
• Role

Issues

meta-meta-level definitions: generic & abstract

Meta-level: domain specific

The state transitions during system
definition

((Re .)

(Re .))

.

quirement Status Approved

quirement Status Not applicable

Specification Status Approved

∀ =
∨ =
→ =

Requirements for evolutionary/incremental
verification/validation/certification

• Product/system development process builds several
dependent “state-spaces ”
• Top level is “mission” (top-requirement) for

requirements/specifications view
• Top level is system under development in its

environment for architectural viewenvironment for architectural view
• Validation/certification is top level for workplan view

• Consequences :
• Orthogonality requirement to reduce dependencies

and localise state-spaces
• Strict version management
• Tracebility

Systems grammar = information model

OpenCookBook
developed as a multi-
user web portal

• System definition through the web
• Possibility of work in local mode on PC
• Organisation of discussion on system

requirements, specifications, architecture and
work plan

OpenCookbook functionality

work plan
• Queries to project database
• Intuitive interface and easy navigation, using

WYSIWYG web-based editors

• Generation of project documentation (in html)
• Generation of Task Juggler reports
• Import/export project database
• Implementation of mapping between project

levels by hyperlinks.

OpenCookbook functionality

levels by hyperlinks.

Dependency tree

• From checkpoint
to release,
dependency tree
can be displayed
and navigated

• => first step
towards “delta-towards “delta-
management” for
incremental
verification/
validation/
certification

Precedence tree

• From release or
validation task to
requirement,
precedence tree can
be displayed and
navigated

• => first step towards • => first step towards
“delta-management”
for incremental
verifcation/validation/
certification

Export to Task Juggler
• For all tasks in WPs,

task project
management
parameters are
exported to Project
Management tool
(Task Juggler)(Task Juggler)

Gant chart, generated from Task entries

Integration with real-time embedded frameworks

• Integration with OpenVE RT-modelling environment
– Software entities => OpenComRTOS tasks and SW

functions
– Interactions=> OpenComRTOS hubs and comm

protocols
– RT attributes (e.g. UML Marte, SMART, …)

• Attributes and state transition conditions for project
scheduling and management

• Attributes and transition conditions to support
certification processes

• Metamodel supporting organisation specific flows

Integration with OpenVE using metamodel (xml)

Technical info

• OpenSpecs
– Based on Drupal 5.21 Content Management System
– Web server (tested with Apache v. 2.2)
– PHP (tested with 5.3)
– MySQL (tested with 5.0)
– scalability and maintainability issues– scalability and maintainability issues

• OpenCookBook v1
– See OpenSpecs

• OpenCookBook v2
– Wt: compiled web portal in C++
– Enhanced metamodel

Conclusion

• Systems engineering process can be
formalised using common metamodel

• Challenges
– Integration of different domains

• Process, architectural, certification
• System Engineering processes (“standards”) are

heuristic standards

– Human interface design: must be intuitive
– Formal(ised) analysis of requirements

• Progress through formalisation
– Reduction of design space give reliability

Conclusion

• More info:

www.altreonic.com

Eric.Verhulst@altreonic.com

OpenCookBook1 freely downloadable

Panel

• In search for hardware that executes
specifications efficiently

• Correlate:
– In seach for software that executes

requirements efficiently

Panel

• Project is “walking the tree” in project’s
statespace
– Requirements -> specifications -> model ->

implementation in SW and HWimplementation in SW and HW
– Final model is implementation (model)
– The larger the statespace the more error prone,

more difficult to verify and validate
– Less is also less for power and cost!

Panel
• Changing / increasing requirements

– Before: only “normal” case: easy (sic)
– Then: also “test case” (intrusive)
– Now also: “fault case” => safety & security!

• Decomposition in entities and interactions• Decomposition in entities and interactions
– (concurrency and communication)

• Error trapping
• Fault containment
• Fault recovery
• Resource metering (time, memory, bandwidth, power)
• => additional complexity and system behaviour!

Panel
• But:

– We program mostly with sequential
programming languages as abstraction layers
on top of sequential von Neuman CPUs

– Software doesn’t execute hardware!
– Software must be efficient in translating

requirements in specifications

• Hence:
– Hardware must be efficient to execute

specifications!

