

Interacting Entities Modelling Methodology for Robust Systems Design

Vitaliy Mezhuyev, Bernhard Sputh
Open License Society
Berdyansk, Ukraine

e-mail: Vitaliy.Mezhuyev,
Bernhard.Sputh@OpenLicenseSociety.org

Eric Verhulst
Altreonic NV

Linden, Belgium
e-mail: Eric.Verhulst@Altreonic.com

Abstract - This paper describes the theoretical principles and
the practical implementation of OpenCookbook, an
environment for systems engineering. The environment guides
and supports developers during requirements and specification
capturing over architectural modelling and workplan
development till validation and final release. It features a
coherent and unified system engineering methodology based on
the interacting entities paradigm. In order to implement it, a
generic web portal was developed. Targeting embedded
systems, it nevertheless was proven to be an effective tool for a
wide range of other system domains. OpenCookbook can be
tailored to the needs of a specific organisation as well as
accommodate engineering standards like IEC61508.

Keywords - systems grammar; ontology; unified semantics;
interacting entities.

I. INTRODUCTION
Systems Engineering (SE) is considered to be a process

that transforms a need into a working system. The need is
often not expressed clearly enough, because it is the result
of the interaction of many stakeholders, each of them
expressing their requirements in a domain specific language.
None of the stakeholders has a complete view outside their
domain of expertise and is often not able to imagine, what
the final system will be. The problem is partly caused by the
fact that we use natural language and that our domains of
expertise are always limited. In order to overcome these
obstacles formalization of knowledge is required and this is
what OpenCookbook attempts to support in the domain of
SE. One type of formalization is related to natural language.
The other is the separation and structuring of concerns on
the base of certain system grammars.

An important aid in the formalization of such an SE
process is that at an abstract and domain independent level,
a common system grammar can be used. We call this the
meta-ontological level vs. the domain specific ontological
level. Such a level is necessary because the comprehension
of natural language is context, and hence domain dependent,
whereas at the level of abstract reasoning about systems the
domain specific differences can often be ignored. The meta-
ontological level is described by a unified systems grammar.
It includes the concepts needed to define requirements,
specifications, test, validation, verification and development
tasks, architectures and work plans for a system
development. The novelty of our approach is that the whole
SE process is considered in a unified way. The other novelty
is that we introduce a so called process view on a system
under development. The purpose of the process view is to

obtain a correct system design flow at the organisational
level. The approach taken is empirically proven by the
development of a supporting tool and applying it to
divergent domains.

II. STRUCTURE OF THE PAPER
The paper is organized as follows. An analysis of related

work is presented in the next section. Section 4 describes the
base principles of the methodology proposed in the paper.
This section introduces the link between the abstract,
domain independent meta-ontological level and the domain
specific ontological level. The concepts and the unified
systems grammar itself are further described.
OpenCookbook, as a web portal supporting the proposed
formalized SE process, is presented in the section 5.
OpenCookbook can guide both the definition and
implementation of concrete instantiations of the SE
processes. Case studies, which demonstrate that this
approach can be applied to different domains, finish this
paper together with conclusions and a list of future work.

III. RELATED WORK
The work done with OpenCookbook is closely related to

ongoing work in other domains; see, e.g., [1-4]. There are a
number of graphical development tools and modelling
languages, such as UML [5][6] and SysML [5][7].
Unfortunately, these approaches have a number of
shortcomings:

- Most architectural models are developed bottom-up,
e.g., as a means of representing graphically what first was
defined in a textual format. Hence, such approaches are
driven by the system architecture and its implementation. As
we discovered in test scenarios, such an approach biases the
stakeholders to think in terms of known design patterns,
often resulting in suboptimal system solutions.

- Most of the modelling approaches limit themselves to
a specific architectural domain, requiring other tools to
support the other SE domains. This poses the problem of
keeping semantic consistency and hence introduces errors.

- It results in the emergency of a wide range of dialects
to fill the “semantic gaps”, but in the end these dialects
undermine the usefulness of the original standard (this is the
reason why from the beginning we based our approach on
unified semantics and adopted a restricted architectural
paradigm of interacting entities).

- Most of the tools have no formal basis and hence have
too many terms and concepts that semantically overlap. In

other words, orthogonality and separation of concerns are
lacking.

- Most of the tools available on the market bring too
many details to the top level, with little support for
abstracting away the details. This undermines the power of
overview and abstraction.

Overall our methodology emphasizes the cognitive
aspect of the SE process, whereas the different activities are
actually just different “views” on the system under
development. Most of the related approaches do not take
these aspects into account.

IV. THE PRINCIPLES OF THE METHODOLOGY

A. Systems grammar
A Systems Grammar (SG) is defined as a set of

concepts, which provide the base for a coherent and
complete description of a system using natural language.
The SG in OpenCookbook describes a project in three
orthogonal views: requirements and specifications
(intentional view), architectural (extensional or design view)
and planning view. It is based on the following principles:

• A systems engineering approach.
• The interacting entities paradigm.
• A distinction between ontological and meta-

ontological levels in the systems definition.
• A distinction between intentional and extensional

views on a system beings defined.
Every domain has its own ontology as a set of concepts

and relations between these concepts. The ontological level
defines concepts which are related to real systems (physical,
chemical, software, hardware, etc.). The meta-ontological
level defines generic concepts and is expressed in the SE
domain by notions such as entity, interaction, requirement,
specification, test case, etc. The meta-ontological concepts
of the systems grammar are linked by relations, such as 'is
described by', 'consists of', 'is descendant of', 'has attributes',
'achieves', etc.

Let us emphasise here the link between our approach
and the ontologies, used in the Semantic Web [8]. There is
also a division on domain specific ontologies and abstract
meta-ontologies (or top-level ontologies), e.g.:

• The Standard Upper Ontology [9];
• Sowa’s top-level ontology [10];
• Cyc’supper ontology [11].
The ontology Ο of domain d is defined as the set of

concepts and relations between concepts ,dΟ Χ ℜ .

{ | 1,..., }lX x l L= = - the finite set of concepts of a
domain.

{ | 1,..., }kr k Kℜ = = - the finite set of relations between
concepts (e.g., Is-A, Part-Of etc).

An ontology can also include other elements like
axioms, constraints, deduction rules, functions of
interpretation, etc.

In an ontology the concepts of a domain are divided in
classes and individuals (see, e.g., the OWL - Web Ontology
Language [12]). The concepts of the system grammar in our
approach are similar with the classes of ontology, which are
instantiated by individual definitions of a system. The
concepts and relations of the system grammar are common
for the SE domain, but specific for the level of a system
definition. For an intentional view, e.g, we use the concept
of requirement which is linked with specification by the
relation “produce”; for design we use entities linked by
interactions; for planning view we use tasks linked by
implementation relations.

On these relations we put logical conditions, defining the
state transitions between different steps of a system
definition (see as examples the Figures 1 and 2). Exactly
these state transitions are the definition of the process view.
So the sense of proposed approach is to consider the SE
process as the labelled state transition system, where labels
represent the steps of a system definition.

Figure 1. The state transitions at the intentional level of a system definition

Figure 2. The state transitions at the implementation level of a system definition

The other novelty of our approach is the expansion of
the ontological model (system grammar) by adding a set of
methods to use it.

{ | 1,..., }nM m n N= = - the finite set of methods used in
the ontology.

So we define an ontology as: , ,d MΟ = Χ ℜ
As examples of methods can be considered:
• system description (corresponding to intentional or

requirements views);
• system design methods (corresponding to extensional

or architectural views);
• validation and verification.
Let us note here, that the general application of ontology

in Semantic Web is knowledge reuse.
Our approach can be also used for other aims, e.g., for

checking the correspondence of a system definition to
standards (this topic will be considered in future papers).

B. Base concepts and methods of the intentional view
Let us pay attention to the proposed methods of system

description and design. As was said, Systems Engineering is
the process that transforms a need into a working system.
Initially, we describe what a system is from an intentional
(requirements) view. From this perspective we can derive
what the system is supposed to be (or to do). Another view
is the extensional (architectural) one. This perspective
shows us how the system should be implemented. The
process view defines how to develop a system in the right
way, including validation and verification stages (see Figure
3).

At the highest requirement level a system is supposed to
achieve its mission. In order to achieve the mission, a
system will be composed of elements (often called modules
or subsystems). In the approach, presented in the paper, we
call these elements entities and the way they relate to each
other, we call interactions. Note, that such a composing
entity can be a system in its own right; hence the entity
concept is hierarchical. The term system is used when
interacting entities exhibit a functionality, which each
individual entity does not exhibit.

For example, a plane is a system of interacting entities
(i.e., body, wings, chassis, etc.) which separately are
aspiring to fall, but which can fly as a whole. As entities and
interactions form a system architecture, all requirements
achieve the mission of a system as an aggregate.

We make an explicit distinction between requirements
and specifications. Specifications are linked with test and
fault cases and hence are measurable instances of the initial
(often imprecise) requirements. It is possible to have several
systems with common requirements, but with different
specifications (e.g., depending on boundary conditions like
cost). Hence, the input for the architectural design is taken
from specifications and not directly from requirements.

Note, that in the industrial practice the terms
requirements and specifications are often not used

consistently, which leading to confusion. Some people even
use the term “requirement specifications”, a rather
ambiguous one. Hence, we consistently use “requirements”
as the required system properties. Specifications are seen as
quantified requirements with their associated test methods.

Capturing requirements and specifications is the most
important part of the system description process.
Specifications are derived from the more general
requirements. This is necessary in order to make
requirements verifiable by measurements. For example, the
initial requirement 'the car should be fast' can be
transformed into the specifications 'accelerating from 0 to
100 km/h in 6 seconds’ and ‘having a top speed of at least
200 km/h'.

Specifications are often formulated with the (hidden)
assumption that the system operates without observable or
latent problems. We call this the normal cases. However,
this is not enough. Specifications are met when they pass
test cases, which often describe specific tests that must be
executed in order to verify the specifications. In
correspondence to test cases we define failure cases, i.e., a
sequence of events that can result in system faults the
system design should cater for. The idea is that by
formulating the failure cases, we begin to understand, what
can go wrong before the real system design starts, which
contributes to prevents possible disasters.

Thus, using a coherent and unified systems grammar
provides us with the basis for building a cognitive model
from initially disjoint user requests. Requirements,
specifications, normal, tests, fault cases are not just a
collection of statements, they represent a conceptual model
of the system with a structure that corresponds to the system
grammar relations.

C. Base concepts and methods of the extensional view
From the extensional or architectural view a system is

defined by entities and interactions between the entities. An
entity is defined by its own attributes and functions. An
attribute is an intrinsic characteristic of an entity. Attributes
reflect qualitative and quantitative properties of an entity
(e.g., color, speed, size, etc.) and have their own names,
types and values. For example, name and purpose are
descriptive attributes of all entities.

Functions define internal behaviour in contrast to
external interactions of entities. In a first approach,
interactions are defined using a discrete time model, i.e.,
implemented as a sequence of messages. Interactions are
caused by events and they are represented by messages. An
interaction structure corresponds to a protocol which can be
defined by a functional flow diagram or a message sequence
chart. State diagrams can be used to show event-function
pairs on the transition lines between states.

An event is any transition that can take place in a
system. It can, for instance be the result of an entity attribute
change (i.e., a change of the entity's state). A message can
cause and can be caused by an event. An interaction changes

the state of all entities involved in the interaction. In
software systems an interaction implies some form of
messages transfer between entities. Such messages can
transfer data or invoke appropriate functions internal to the
entity.

Interfaces belong to the structural part of an entity. An
interface is the boundary domain of interaction between two
or more entities. Interfaces can be of the input or output
type, which defines the direction of data, energy or
information transfer at the interaction between the entities.
Examples of interfaces are an electric socket (input:
electrical power or current), a fuel pipeline (output from the
tank), a USB port (input-output), etc.

Interfaces and interactions are related by the fact, that
interfaces transform events, which are internal to an entity,
into external messages. A second entity will receive such a
message through its interface, transforming the external
message into its internal representation (event). An interface
can also filter received messages and invoke appropriate
functions internal to the entity. Data transfer is the simplest
application of such interactions. It should be noted, that
while an interaction happens between two entities, the
medium that hosts the interaction can be a system in its own
right. We need take into account that its properties can also
affect the system behaviour. Examples are internet
backbones, long hydraulic channels, transmission lines, etc.
One should also note, that using the terms “events”,
“messages” and “protocols” is more appropriate in the
domain of embedded systems, but in general an interaction

implies an energy, matter or information transfer between
entities.

D. Linking intentional and extensional levels of a system
definition
As mentioned above, at the highest level a system is

described by its requirements, which we consider as
intentional level of a system definition. Requirements must
be transformed into extensional architectural descriptions
(i.e., entities-interactions, attributes-values, event-function
pairs), which in turn should result in measurable
specifications.

Every entity has attributes with values of the appropriate
type. For example, if we consider the requirement “the
acceleration of the car is at least as high as the top 5
competitors” we have an entity decomposition (“car”),
which maps onto an attribute-value decomposition (with
typification of attribute “acceleration” in the type “at least
high as” and value “top 5”).

The transition from the intentional requirements to the
extensional architectural level is achieved by abstraction,
decomposition, typification, structuring, hierarchy definition
and other methods. This means, the intentional qualitative
requirements produce: extensional entities, interactions,
interfaces, attributes, functions (i.e., architectural elements
descriptions), and specifications (i.e., normal cases, test
cases, failure cases), work plans and tasks, as well as issues
to be resolved. The order of this sequence is essential and
constitutes the process view on a system definition.

Note, at the initial stages of the systems engineering

Figure 3. The Design and process views on a system under development

process, a precise architectural decomposition into real
entities and interactions does not yet exist. There is only an
incomplete cognitive model which is expressed in the form
of requirements and specifications. The task for the systems
engineer is to transform it into the extensional domain, i.e.,
to develop an architectural model that will be isomorphic to
the real system.

We propose the next method as a novelty of our SE
approach. During the first stage of system definition, we
allocate nominative qualifiers to be used in the extensional
(architectural and work planning) domain. At the intentional
phase the architecture definition is nominal - i.e., we only
have names in the vocabulary {X} of entities and
interactions, which is not yet the real ontological model.
This is the first step towards the transition from the
intentional to the extensional level.

The linking pin between intentional and extensional
levels is primarily the system itself, i.e., the entities and
interactions in the architectural view on the system.

The interesting problem is the analysis of intentional and
extensional relationships. These relationships are different
by nature (e.g., subordination between requirements does
not imply that such subordination exists between
architectural entities). In general, the development of
methods to make the transition from the intentional
requirements model to the extensional architectural model is
a challenging task. The hardest problem is finding
architectural relations in an intentional cognitive model,
reflecting structural, functional and temporal relations of a
real system.

E. Planning, validation and verification views
Another important point of view in SE is the project
development view, which in our approach is based on
qualifiers as result of architectural system decomposition.
Once identified, the entities will lead to fulfilment of the
specifications are grouped into work packages, which in
turn are used for project planning. Each work package is
divided into tasks with attributes, such as duration,
resources, milestones, deadlines, responsible, etc. Change
requests can be considered as well. Some of the tasks are
“horizontal” as they are not directly related to specific
entities but to methodology requirements. For example,
version management is a typical methodology requirement
for any safety driven engineering project.

Defining the timeline of the workplan (i.e., deadlines,
periods, milestones, etc.) and the tasks are important system
development stages. Selecting such measures and attaching
them to work packages leads to specifications of a
workplan.

We distinguish the following classes of tasks. A
development task is the actual development activity, but can
include other activities like simulation, prototyping or
formal model verification. Following the process view, it
can only start once the specifications are approved (see
Figure 3).

A verification task is defined as the activity that will not
verify an implementation but the development task itself. It
can be seen as an audit of the development activity and has
to verify checkpoints related to the development itself. It
answers the question “did we develop it right?” Typical
examples are the adherence to coding rules, proper version
management, design rules, review meetings, etc. Note that,
verification can only really start when the implementation
has reached the status “work done”, although this should not
exclude spot check verification while the development is
still going on. It is clear that verification should be done by
different groups of engineers than those carrying out the
development.

A test task will test (according to the test cases of the
specifications) the results developed. It can only start once
the verification task has been approved.

Finally we consider the validation task. A validation task
will validate that the implementation result (after
verification and testing was successful) meets the original
requirements. It answers the question “did we develop the
right system?”. Validation works in a top-down fashion. The
final validation is the integration of all developed sub-
systems. If this is successful, the product can be “released”.
Note that at this stage some properties might be different
from the specifications. We call these the characterisation of
the system.

V. PROTOTYPE DEVELOPMENT
To validate the concepts and its applicability for the SE

domain prototype environments were developed using first
Plone [13] and next Drupal [14] Open Source Content
Management Systems (CMS). The release version is
implemented with the Drupal CMS, benefiting from its
powerful taxonomy support.

In both tools a new project or system-under-
development is created like a web portal with specific
modules that reflect the systems grammar. Utilities and
scripts allow us: i) to make a link between different phases
of the systems engineering process, ii) to run tests for
checking consistency and completeness and iii) to generate
documents.

Being a web based tool, it naturally caters for distributed
team work. Other advantages are that existing plug-in
modules can be used. At each moment the up to date version
of the project documents can be generated.

OpenCookbook supports following activities in the
system definition process:

• Requirements capturing;
• Transforming requirements into specifications (with

definition of normal, test, failure cases and issues);
• Architectural decomposition in entities and

interactions.
• Defining work packages and tasks (development,

verification, test and validation).
All these activities are supported by a common

repository in order to facilitate a coherent model

development of a system. In a first step, the model is
expressed as natural language requirements. Subsequent
steps have to refine and formalize this conceptual model.
The repository is based on a unified systems grammar which
acts as the meta-model and allows separate and refine
expressed requirements.

VI. CONDUCTED EVALUATION OF THE PROPOSED
APPROACH

In order to fine-tune the prototype and to verify its
applicability to different domains, a number of partial
evaluations were conducted. Projects were defined to
develop a Real Time Operating System (OpenComRTOS)
and supporting tools [15], a process flow supporting the
IEC61508 safety standard, and a processor software
environment. In the course of these experiments refinements
were applied, but overall these tests, in diverse domains,
indicate the suitability of the approach. Most issues were
related to the ergonomics of the environment and some
deficiencies of CMS used.

Our systems engineering approach was also mapping it
onto a Business Process Engineering method. Here we
found that the unified systems grammar is fully applicable,
although often a very different terminology is used or
different tools. While a technical engineer might use virtual
prototyping or CAD tools to simulate different use
scenarios, a business manager will likely create a business
plan, simulating the business process using a financial
spreadsheet. This reflects that in a business environment the
“mission” of a system is to generate profit, whereas in the
engineering domain the mission is often to provide certain
functionality.
A final test was the using the OpenCookbook for the formal
development of the OpenComRTOS operating system [15].
The formal models used during the development of
OpenComRTOS, have a very high abstraction level, but this
level of domain abstraction fully corresponds to the meta-
ontology used by OpenCookbook.

OpenCookbook supports an incremental way of a
modelling process. Starting from a small and very abstract
model, refinements and details are added until a model
emerges that is very close to the implementation
architecture. Each intermediate model can be checked,
which exposes logical errors in the design. As a
consequence, the example projects progressed in small steps
with each step being subjected to an intensive review
process by all team members (aided by the fact that
OpenCookbook is a web-based tool). As a result, the
abstraction level gradually removed from the
implementation domain. This allowed us to detect the
negative impact of being too familiar with the
implementation domains and how this biases engineers and
stakeholders. Therefore, the result was much cleaner and
had more compact systems architecture.

Application of the process view in parallel with the
design and the planning views allows us guarantee the

correctness of order of steps of the system development
process.

CONCLUSIONS
The meta-ontology, which provides a unified grammar

for a system definition, is proposed. The concept of meta-
ontology expands the notion of the top level ontology, as it
used in the Semantic Web approach.

With the design view, allowing to check if we develop
the right system, the process view, allowing to check if we
develop the system in a right way, is introduced.

The OpenCookbook prototype environment was
developed to evaluate the proposed methodology in
different SE domains.

FUTURE WORK
Future developments will be devoted to a formalisation

of the meta-ontology for the process view. This will give to
the user a possibility of developing domain specific
methodologies.

Properties of the model of SE processes as the labelled
state transition system will be further explored. This will
strengthen the theoretical underpinnings of the proposed
approach and its further practical implementations.

Mapping between different levels of a system definition
will be further developed. Further research is also needed to
better understand the interplay between the ontology domain
and process domain.

REFERENCES
[1] Alexander Kossiakoff and William N. Systems Engineering

Principles and Practice. - Wiley-Interscience. – 2002. - 488 p.
[2] Benjamin S. Blanchard and Wolter J. Fabrycky. Systems

Engineering and Analysis (5th Edition). - Prentice Hall. - 2010. - 800
p.

[3] Joseph E. Kasser. A Framework for Understanding Systems
Engineering. - BookSurge Publishing. - 2007. - 378 p.

[4] Mark Austin, Vimal Mayank, and Natalia Shmunis. PaladinRM:
graph-based visualization of requirement organized for team-based
design // System engineering. - Volume 9. - Number 2. - 2006. –
page 129.

[5] Tim Weilkiens. Systems Engineering with SysML/UML. Modeling,
Analysis, Design. - Morgan Kaufmann Publishers Inc. - 1st edition,
2008. - 320 p.

[6] http://www.uml-forum.com/
[7] http://www.omgsysml.org
[8] Berners-Lee T., Hendler J., and Lassila O. The Semantic Web //

Scientific American. - May. – 2001.
[9] http://suo.ieee.org/
[10] http://www.jfsowa.com/ontology/toplevel.htm
[11] http://www.cyc.com/cyc-2-1/cover.html
[12] OWL Web Ontology Language Guide. http://www.w3.org/TR/owl-

guide/
[13] www.plone.org
[14] www.drupal.org
[15] Bernhard H.C. Sputh, Oliver Faust, Eric Verhulst, and Vitaliy

Mezhuyev. OpenComRTOS: A Runtime Environment for
Interacting Entities // Communicating Process Architectures 2009. –
IOS Press. – 2009. – pp. 173 – 184.

