VirtuosoNext Application Programmer Interface
1.0.0.0

VirtuosoNext-Designer-1.0.0.0

Contents

I VirtuosoNext Fundamentals

1 General Concepts

1.1 Background of VirtuosoNext
1.2 Physical structure of the target processing system
1.3 Layered architecture of VirtuosoNext.
1.4 Thelogical view of the L1 Layer

1.4.1 Principle of synchronization and communication

1.4.2 Scheduling Tasks and Task interactions through the RTOS kernel

1.5 Inter-Taskinteraction
1.6 Application specific serviceso
1.7 A new concurrent programming paradigm
1.8 Inter-Nodeinteraction

2 Functional Design of the L1 Layer

2.1 Taskinteractions
2.1.1 Logical viewof Task
2.1.2 Logical viewof Packets
2.1.3 Logical view of the generic LI Hubs
2.14 On scheduling forreal-time
2.1.5 OnTimers
2.1.6 Onruntime errors o o ii i
2.1.7 Logical view of the PacketPool
2.2 Inter-node interactions
2.2.1 Logical view of Link Drivers and inter-node interactions
2.2.2 Logical viewofthe Router
23 Multi-tasking L.
2.3.1 Definition of multi-tasking
2.3.2 Logical view of the Context Switch
2.3.3 Logical view of the Kernel
2.3.4 Logical view of the Scheduler

II Installation Instructions

3 Installation Instructions

3.0.1 Folder Structure on Download Server

3.1 VisualDesigner-VirtuosoNext Installation Instructions for MS-Windows

311 Imstall 7zipo
3.1.2 MinGW Tool-chain for Windows
3.1.3 Adding MinGW to the System Binary Search Path
3.14 CMakeBuildSystem
3.1.5 Installing VisualDesigner
32 HowtorunanExample

17
17
17
20
21
22
22
23
23
23
23
25
25
25
25
26
29

ii CONTENTS
3.3 Troubleshooting e e e 37
33.1 mingw32-makenotfound 38

34 Summary e e e e e e e e 38
III VirtuosoNext 39
4 Module Index 41
4.1 Modules e 41

5 Data Structure Index 43
5.1 DataStructures e e e e e e e e 43

6 Module Documentation 45
6.1 Task Management Operationsttt 45
6.1.1 Detailed Description 46

6.1.2 Visual Designer e 46

6.1.2.1 Properties e 46

6.1.3 Macro Definition Documentation 46

6.1.3.1 L1_UNUSED_PARAMETER 46

6.1.4 Function Documentation 47

6.1.4.1 LI1_getCurrentKernelTickCount 47

6.1.42 Ll1_getCurrentTaskld 47

6.1.4.3 Ll_getCurrentTaskPriority 47

6.1.4.4 Ll_getCurrentTaskStackSize 47

6.1.4.5 L1_hubldToHubName 48

6.1.4.6 L1 _KernelTicks2msec 48

6.1.47 L1 _Msec2KernelTicks 48

6.148 L1_ResumeTask W 49

6.1.49 L1_StartTask_ W e 49

6.14.10 LI1_StopTask W 50

6.14.11 L1_SuspendTask W 51

6.1.4.12 L1_taskldToTaskName 52

6.1.4.13 L1_WaitTask_ WT 52

6.1.4.14 L1_WaitUntil WT 53

6.1.4.15 L1_Yield. W 53

6.1.5 Variable Documentation 53

6.1.5.1 L1 _HubNamesToIDs 53

6.1.52 LI_NBR_OF NODES 53

6.1.5.3 L1_NodeldToNbrOfHubs 54

6.1.54 L1_NodeldToNbrOfTasks 54

6.1.5.5 L1 _TaskNamesToIDs 54

6.2 Asynchronous Services L e e e e 54
6.2.1 Detailed Description e e 54

6.2.2 Function Documentation 54

6.2.2.1 Ll_initialiseAsyncPacket 54

6.2.2.2 L1 _WaitForPacket 55

6.2.2.3 L1_WaitForPacket NW 56

6.2.2.4 L1_WaitForPacket W 56

6.2.2.5 L1_WaitForPacket WT 57

6.3 BaseTypes e 57
6.3.1 Detailed Description 58

6.4 LI_BYTE e e 58
6.4.1 Detailed Description e 58

VirtuosoNext-Designer-1.0.0.0

CONTENTS iii

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.4.2 Variable Documentation 58
6.42.1 LI1_BYTE_MAX e e 58
6.422 LI_BYTE_MIN e 58
L1_UINT8 e 58
6.5.1 Detailed Description 59
6.5.2 Variable Documentation 59
6.5.2.1 LI1_UINT8_MAX e e e e e 59
6.522 LI1_UINT8_MIN i i 59
LI_INT8 . . . 59
6.6.1 Detailed Description 59
6.6.2 Variable Documentation 59
6.6.2.1 LI_INT8_MAX e e e e e 59
6.6.2.2 LI_INT8_MIN et 59
LI_UINTIO 59
6.7.1 Detailed Description 59
6.7.2 Variable Documentation 60
6.72.1 LI1_UINTI6_MAX e e e 60
6.72.2 LI1_UINTI6_MIN e e 60
LI_INTILIO6 60
6.8.1 Detailed Description 60
6.8.2 Variable Documentation 60
6.82.1 LI_INTI6_MAX e e 60
6.82.2 LI_INTI6_MIN e e e e 60
LI_UINT32 e 60
6.9.1 Detailed Description 60
6.9.2 Variable Documentation 61
6.92.1 LI1_UINT32_MAX et eee 61
6.92.2 LI1_UINT32_MIN et 61
L1_INT32 . . . e e e e 61
6.10.1 Detailed Description 61
6.10.2 Variable Documentation 61
6.10.2.1 LI1_INT32_MAX e e e 61
6.10.2.2 LI1_INT32_MIN e e e e 61
LI_UINTO4 e e e e e e e 61
6.11.1 Detailed Description 61
6.11.2 Variable Documentation 62
6.11.2.1 LI1_UINT64_MAX et e 62
6.11.2.2 L1_UINT64_MIN et e 62
LI_INTO4 e e 62
6.12.1 Detailed Description 62
6.12.2 Variable Documentation e 62
6.12.2.1 LI1_INT64_MAX e 62
6.12.2.2 LI_INT64_MIN e e e e 62
LI_Time. e e 62
6.13.1 Detailed Description 62
6.13.2 Variable Documentation e 62
6.13.2.1 L1_Time_ MAX e 62
6.13.22 L1_Time MIN. e 63
L1 _KernelTicks e 63
6.14.1 Detailed Description e e 63
6.14.2 Variable Documentation 63
6.14.2.1 L1 _KernelTicks. MAX 63
6.142.2 L1_KernelTicks MIN 63
L1_BOOL e e 63

VirtuosoNext-Designer-1.0.0.0

iv CONTENTS
6.15.1 Detailed Description e 63
6.15.2 Macro Definition Documentation, 63

6.152.1 LI_FALSE e 63

6.1522 LI_TRUE 63

6.16 L1_Priority e 64
6.16.1 Detailed Description e 64

6.17 L1_TaskArguments o i it e e e e e e e e 64
6.17.1 Detailed Description L 64

6.18 Typesrelated to Timingo e 64
6.18.1 Detailed Description 64
6.18.2 Typedef Documentation 64
6.18.2.1 L1_KernelTicks 64

6.182.2 LI_TIime e 64

6.182.3 LI_Timeout 65

6.19 L1_ErrorCode e e 65
6.19.1 Detailed Description 65
6.19.2 Typedef Documentation 65
6.19.2.1 L1_ErrorCode 65

6.19.3 Variable Documentation 65
6.19.3.1 LI1_ErrorCode_ MAX 65

6.20 L1 _ReturnCode 65
6.20.1 Detailed Description e e 66
6.20.2 Macro Definition Documentation 66
6.20.2.1 RC_FAIL e 66

6.20.2.2 RC_FAIL_END it iii i 66

6.20.2.3 RC_FAIL_NULL_POINTER 66

6.20.24 RC_FAIL_OUT_ OF MEM 66

6.20.2.5 RC_FAIL_UNSUPPORTED 66

6.20.2.6 RC_OK e 66

6.20.2.7 RC_TO e e 66

6.20.3 Typedef Documentation 66
6.20.3.1 L1 _ReturnCode o o o 66

6.21 VirtuosoNextHub 67
6.21.1 Detailed Description e 67

6.22 Developer Information L o 67
6.22.1 Detailed Description 68
6.22.2 Macro Definition Documentation 68
6.222.1 LI_HubNodelD 68

6.22.2.2 Ll_id2localhub 68

6.22.2.3 Ll1_isControlPacket 68

6.22.2.4 Ll_isLocalHubID 69

6.22.2.5 Ll1_isPutPacket 69

6.22.3 Typedef Documentation 69
6.22.3.1 L1_HubControlFunction 69

6.22.3.2 L1_HubStateUpdateFunction 70

6.22.3.3 L1_HubSyncConditionFunction. 70

6.22.3.4 LI1_HubSynchronizeFunction 70

6.22.4 Function Documentation L 71
6.22.4.1 L1_Hub_exchangePacketData. 71

6.23 BlackBoardHub 71
6.23.1 Detailed Description 72
6.23.2 Hub Description 72
6.23.3 Visual Designer 72
6.23.3.1 Properties e e 72

VirtuosoNext-Designer-1.0.0.0

CONTENTS v
6.23.4 Function Documentation 72
6.23.4.1 BlackBoardHub_SyncCondition 72
6.23.4.2 BlackBoardHub_Synchronize 73
6.23.4.3 BlackBoardHub_Update 74
6.23.4.4 L1_Drv_Isr_UpdateBlackBoard NW 74
6.23.4.5 L1_Drv_Isr_UpdateDataEvent NW 75
6.23.4.6 Ll1_isBlackBoardHub 76
6.23.47 L1_ReadBlackBoard 76
6.23.4.8 L1 ReadBlackBoard NW 77
6.23.49 L1 _ReadBlackBoard W 78
6.23.4.10 L1_ReadBlackBoard WT 78
6.23.4.11 L1_UpdateBlackBoard 79
6.23.4.12 L1_UpdateBlackBoard NW 80
6.23.4.13 L1_WipeBoard 80
6.23.4.14 L1_WipeBoard_ NW 81

6.24 DataEventHub 81
6.24.1 Detailed Description e 82
6.24.2 Visual Designer e 82
6.24.2.1 Properties e 82

6.24.3 Function Documentation 82
6.24.3.1 DataEventHub Ioctl 82
6.24.3.2 DataEventHub_SyncCondition 82
6.24.3.3 DataEventHub_Synchronize 83
6.24.3.4 DataEventHub_Update 83
6.24.3.5 L1 _ClearDataEvent NW, 84
6.24.3.6 L1_ReadDataEvent NW, 84
6.24.3.7 L1_ReadDataEvent W 84
6.24.3.8 L1_ReadDataEvent WT 85
6.24.3.9 L1_UpdateDataEvent NW 85

6.25 Data-Queue Hub 85
6.25.1 Detailed Description 86
6.252 Visual Designer 86
6.25.2.1 Properties e e 86

6.25.3 Typedef Documentation e 86
6.25.3.1 L1_DataQueue_HubState 86
6.25.3.2 L1_DataQueueElement 87

6.25.4 Function Documentation 87
6.25.4.1 DataQueueHub_SyncCondition 87
6.25.4.2 DataQueueHub_Synchronize 87
6.25.4.3 DataQueueHub_Update 87
6.25.4.4 Ll_DataQueue_get i 88
6.25.4.5 Ll_DataQueue_put 88
6.25.4.6 Ll_isDataQueueHub 89
6.25.4.7 Ll_isDataQueueHubEmpty 90
6.25.4.8 Ll1_isDataQueueHubFull 90

6.26 EventHub e 90
6.26.1 Detailed Description 91
6.26.2 Visual Designer e 91
6.26.2.1 Properties e e 91

6.26.3 Example e e 91
6.26.3.1 Entities e 91

6.26.4 Source Code of Task1EntryPoint 92
6.26.5 Source Code of Task2EntryPoint 92
6.26.6 Macro Definition Documentation, 93

VirtuosoNext-Designer-1.0.0.0

vi

CONTENTS

6.26.6.1 L1 _Event_State e 93

6.26.7 Typedef Documentation 93
6.26.7.1 L1_Event_HubState 93

6.26.8 Function Documentation 93
6.26.8.1 EventSyncCondition 93
6.26.8.2 EventUpdate e 94
6.26.8.3 LI1_Drv_Isr_RaiseEvent NW 94
6.26.84 Ll_isEventHub 95
6.26.8.5 Ll_isHubEventSet. 95
6.26.8.6 L1 RaiseEvent NW 95
6.26.8.7 L1 _RaiseEvent W 96
6.26.8.8 L1 _RaiseEvent WT 96
6.26.8.9 L1_TestEvent_A 97
6.26.8.10 L1_TestEvent NW 98
6.26.8.11 L1_TestEvent_W 98
6.26.8.12 L1 _TestEvent WT 99

6.27 FIFOHub e 99
6.27.1 Detailed Description L 100
6.27.2 Visual Designer 100
6.27.2.1 Properties e e 100

6.27.3 Example e 100
6.27.3.1 Entities oL e e 101

6.27.4 Source Code of TasklEntryPoint 101
6.27.5 Source Code of Task2EntryPoint 101
6.27.6 Typedef Documentation 102
6.27.6.1 LI1_Fifo_HubState 102

6.27.7 Function Documentation Lo 102
6.27.7.1 Fifo_loctl 102
6.27.7.2 FifoSyncCondition 103
6.27.7.3 FifoSynchronize 103
6.27.7.4 FifoUpdate 103
6.27.7.5 Ll_DequeueFifo NW 104
6.27.7.6 L1_DequeueFifo. W 104
6.27.7.7 L1_DequeueFifo_ WT 105
6.27.7.8 L1_Drv_Isr_EnqueueFifo NW 106
6.27.79 L1_EnqueueFifo NW 106
6.27.7.10 L1_EnqueueFifo W o 107
6.27.7.11 L1_EnqueueFifo WT 107
6.27.7.12 L1_GetDataFromFifo NW 108
6.27.7.13 L1_GetDataFromFifo W 108
6.27.7.14 L1_GetDataFromFifo WT 109
6.27.7.15 L1_isFifoHub 109
6.27.7.16 L1_isHubFifoEmpty 109
6.27.7.17 L1_isHubFifoFull, 110
6.27.7.18 L1_PutDataToFifo NW 110
6.27.7.19 L1_PutDataToFifo_ W 111
6.27.7.20 L1_PutDataToFifo_ WT 111

6.28 Memory PoolHub 112
6.28.1 Detailed Description 112
6.28.2 Visual Designer 112
6.28.2.1 Properties 112

6.28.3 Example 113
6.28.3.1 Entities e e 113
6.28.3.2 MemoryPoolExampleTEP 113

VirtuosoNext-Designer-1.0.0.0

CONTENTS vii
6.28.4 Macro Definition Documentation 114
6.28.4.1 Ll_isMemoryPoolHub 114
6.28.4.2 L1_MemoryPool_State L. 114

6.28.5 Function Documentation 114
6.28.5.1 LI1_AllocateMemoryBlock 114
6.28.5.2 L1_AllocateMemoryBlock NW 115
6.28.5.3 L1_AllocateMemoryBlock W 116
6.28.5.4 L1_AllocateMemoryBlock WT 116
6.28.5.5 LI1_DeallocateMemoryBlock NW 117
6.28.5.6 MemoryPoolloctlo 118
6.28.5.7 MemoryPoolSyncCondition 118
6.28.5.8 MemoryPoolSynchronize 118
6.28.5.9 MemoryPoolUpdate 119

6.29 PacketPoolHub. 119
6.29.1 Detailed Description 119
6.29.2 Visual Designer 120
6.29.2.1 Properties e e 120

6.29.3 Typedef Documentation e 120
6.29.3.1 L1_PacketPool HubState 120

6.29.4 Function Documentation 120
6.29.4.1 L1 _AllocatePacket. 120
6.29.4.2 L1_AllocatePacket NW 121
6.29.4.3 L1_AllocatePacket W 121
6.29.4.4 L1_AllocatePacket WT 122
6.29.4.5 L1_DeallocatePacket NW 122
6.29.4.6 L1_isHubPacketPoolPacketAvailable 123
6.29.4.7 L1_isPacketPoolHub 123
6.29.4.8 L1_PacketPool State, 124
6.29.4.9 PacketPoolloctl 124
6.29.4.10 PacketPoolSyncCondition 124
6.29.4.11 PacketPoolSynchronize 125
6.29.4.12 PacketPoolUpdate 125

6.30 Port Hub e 125
6.30.1 Detailed Description e 126
6.30.2 Visual Designer 126
6.30.2.1 Properties 126

6.30.3 Example e 126
6.30.3.1 Entities e e e e 126

6.30.4 Source Code for Task1EntryPoint 127
6.30.5 Source Code for Task2EntryPoint 127
6.30.6 Function Documentation 128
6.30.6.1 L1_Drv_Isr_PutPacketToPort NW 128
6.30.6.2 L1_GetDataFromPort NW 128
6.30.6.3 L1_GetDataFromPort W, 129
6.30.6.4 L1_GetDataFromPort WT 129
6.30.6.5 L1_GetPacketFromPort A, 130
6.30.6.6 L1_GetPacketFromPort NW 131
6.30.6.7 L1_GetPacketFromPort W 132
6.30.6.8 L1_GetPacketFromPort WT 132
6.30.6.9 Ll_isLocalPortHub 133
6.30.6.10 L1_PutDataToPort NW 133
6.30.6.11 L1_PutDataToPort W 134
6.30.6.12 L1_PutDataToPort WT 134
6.30.6.13 L1_PutPacketToPort_ A 135

VirtuosoNext-Designer-1.0.0.0

viii CONTENTS
6.30.6.14 L1_PutPacketToPort NW 136
6.30.6.15 L1_PutPacketToPort W 137
6.30.6.16 L1_PutPacketToPort WT 137
6.30.6.17 LocalPortSyncCondition 138
6.30.6.18 LocalPortSynchronize 138

6.31 Resource Hub 139
6.31.1 Detailed Description e 139
6.31.2 Visual Designer 139

6.31.2.1 Properties 140
6.31.3 Example e 140
6.31.3.1 Entities e e 140
6.31.4 Source Code of TasklEntryPoint 140
6.31.5 Source Code of Task2EntryPoint 140
6.31.6 Typedef Documentation 141
6.31.6.1 L1 Resource HubState 141
6.31.7 Function Documentation 141
6.31.7.1 L1_isHubResourceLocked 141
6.31.7.2 Ll_isResourceHub, 141
6.31.7.3 L1_LockResource. NW 142
6.31.7.4 L1 LockResource Wo 142
6.31.7.5 L1 _LockResource WT 143
6.31.7.6 L1_UnlockResource NW 143
6.31.7.7 ResourceSyncCondition 144
6.31.7.8 ResourceSynchronize 144
6.31.7.9 ResourceUpdate 144

6.32 Semaphore Hub 145
6.32.1 Detailed Description e 145
6.32.2 Visual Designer 145

6.32.2.1 Properties e 146
6.32.3 Example 146
6.32.3.1 Entities e e e e 146
6.32.4 Source Code of TasklEntryPoint 146
6.32.5 Source Code of Task2EntryPoint 147
6.32.6 Typedef Documentation 147
6.32.6.1 L1_Semaphore HubState 147
6.32.7 Function Documentation 147
6.32.7.1 LI1_Drv_Isr_SignalSemaphore NW 147
6.32.7.2 Ll1_isHubSemaphoreSet, 148
6.32.7.3 Ll_isSemaphoreHub, 148
6.32.7.4 L1_SignalSemaphore NW, 149
6.32.7.5 LI1_SignalSemaphore. W 149
6.32.7.6 LI1_SignalSemaphore_ WT 150
6.32.7.7 LI1_TestSemaphore_ A 150
6.32.7.8 L1_TestSemaphore NW 151
6.32.7.9 L1_TestSemaphore_ W 152
6.32.7.10 L1_TestSemaphore_WT 152
6.32.7.11 SemaphoreSyncCondition 153
6.32.7.12 SemaphoreUpdate 153

6.33 Memory Block Queue Hub 153
6.33.1 Detailed Description e 154
6.33.2 Visual Designer 154

6.33.2.1 Properties e 154
6.33.3 Macro Definition Documentation 155
6.33.3.1 Ll_isMemoryBlockQueueHub 155

VirtuosoNext-Designer-1.0.0.0

CONTENTS ix
6.33.4 Enumeration Type Documentation 155
6.33.4.1 MemoryBlockQueueHub_IOCTL_CODES 155

6.33.5 Function Documentation 155
6.33.5.1 LI1_AcquireMemoryBlock NW 155
6.33.5.2 Ll1_DequeueMemoryBlock 156
6.33.5.3 L1_DequeueMemoryBlock NW 156
6.33.5.4 L1_DequeueMemoryBlock W 156
6.33.5.5 L1_DequeueMemoryBlock WT 157
6.33.5.6 L1_Drv_Isr_EnqueueMemoryBlock NW 157
6.33.5.7 L1_EnqueueMemoryBlock 158
6.33.5.8 LI1_EnqueueMemoryBlock NW 159
6.33.5.9 L1_EnqueueMemoryBlock W 159
6.33.5.10 L1_EnqueueMemoryBlock WT 159
6.33.5.11 L1_MB_getMemory 160
6.33.5.12 L1_MB_getNbrOfUsedBytes 160
6.33.5.13 L1_MB_getSize 161
6.33.5.14 L1_MB_setNbrOfUsedBytes 161
6.33.5.15 L1_ReturnMemoryBlock NW 161
6.33.5.16 MemoryBlockQueueHub_Ioctl 161
6.33.5.17 MemoryBlockQueueHub_SyncCondition 162
6.33.5.18 MemoryBlockQueueHub_Synchronize 162
6.33.5.19 MemoryBlockQueueHub_Update 163

6.34 Hardware Abstraction Layer 163
6.34.1 Detailed Descriptiono 163
6.34.2 Function Documentation 163
6.34.2.1 L1 _deinitializeContextOfTask 163
6.34.2.2 L1 _enterCriticalSection 164
63423 Ll enterISR 164
6.34.2.4 L1_hal SMP_getCoreNumber 165
6.34.2.5 L1_initializeContextOfTask 165
6.34.2.6 L1 _initializePlatform 166
6.34.2.7 L1 _leaveCriticalSection 166
6.342.8 Ll _leavelSR e 167
6.34.2.9 Ll_restoreStatusRegister 167
6.34.2.10 L1_saveStatusRegister o 168
6.34.2.11 L1 _startTasks 168
6.34.2.12 L1_switchContext o o i i e 169

6.35 Internal Kernel API 169
6.35.1 Detailed Description e 171
6.35.2 Macro Definition Documentation 171
6.35.2.1 Ll_id2localport 171
6.352.2 Ll_isLocalPortID 171
6.35.2.3 Ll_isLocalTaskID 171
6.352.4 L1 _PortNodelD 172
6.35.2.5 Ll1_thisNodeID 172

6.35.3 Typedef Documentation 172
6.353.1 Ll_InputPort. e 172

6.35.4 Enumeration Type Documentation 172
6.35.4.1 L1_TaskStatus 172

6.35.5 Function Documentation 173
6.35.5.1 inputPortService oL 173
6.35.5.2 L1 _abortTaskService 173
6.35.5.3 Ll_anyPacketService 173
6.35.5.4 L1_buildAndInsertPacket, 173

VirtuosoNext-Designer-1.0.0.0

X CONTENTS
6.35.5.5 Ll1_changeTaskPriority 174

6.355.6 Ll_idleTask e 174

6.35.5.7 Ll_initLinkDriver 174

6.35.5.8 L1_KernelEntryPoint 174

6.35.5.9 Ll1_KernelLoop 175

6.35.5.10 L1_KernelPacketPool_getPacket 175

6.35.5.11 L1_List_insertTask 175

6.35.5.12 L1_List_removeTask 175

6.35.5.13 L1_makeTaskReady 176

6.35.5.14 L1_remoteService v v i i e e 176

6.355.15 L1_resetTimer 0 v v i e 176

6.35.5.16 L1_resumeTaskService, 176

6.35.5.17 L1_returnPacketService 177

6.35.5.18 L1 _returnToTask 177

6.35.5.19 L1_runRTOS o 177

6.35520 L1_runTasko 177

6.35.5.21 L1 _runVirtuosoNext 177

6.35.5.22 L1 _setTimer 178

6.35.5.23 L1_startTaskService 178

6.35.5.24 L1_stopTaskService 178

6.35.5.25 L1_suspendTaskService 179

6.35.5.26 L1_timerPacketService 179

6.35.5.27 L1_timerPacketService tick 179

6.35.6 Variable Documentation 179
6.35.6.1 L1_NodeTimerTimeoutList 179

7 Data Structure Documentation 181
7.1 _struct_L1_DataQueueElement_ Struct Reference 181
7.1.1 Detailed Description e 181
7.1.2 Field Documentation e 181
7121 data e e e e e 181

7.1.2.2 dataSize e e 181

7.2 _struct_L1_DataQueueState_ Struct Reference 181
7.2.1 Detailed Description e 182
7.2.2 Field Documentation e e 182
T22.1 COUNL o o e e e e e e e e e e 182

7222 elements e e e e e e e e e 182

7223 elementSize 182

7224 head 182

7225 nbrOfElements. e 182

7226 tail ... e 182

7.3 _struct_L1_EventState_ Struct Reference 182
7.3.1 Detailed Description 183
7.3.2 Field Documentation 183
7321 dsSet 183

7.4 _struct_ L1 FifoState_ Struct Reference 183
7.4.1 Detailed Description 183
7.4.2 Field Documentation 183
7.42.1 Buffer e 183

7422 Count e e 184

7.423 DataParts. e 184

7424 Head 184

7425 Size ... e e e 184

7.42.6 Tail e e e 184

VirtuosoNext-Designer-1.0.0.0

CONTENTS xi
7.5 _struct_ L1 _Hub_ Struct Reference 184
7.5.1 Detailed Description 184

7.5.2 Field Documentation e 185
7.52.1 HubControlFunction 185

7.52.2 HubState e 185

7.5.2.3 HubSyncConditionFunction 185

7.5.24 HubSynchronizeFunction 185

7.5.25 HubType e 185

7.52.6 HubUpdateFunction 185

7.5.277 WaitingList 185

7.6 _struct_L1_MemoryBlock_ Struct Reference 185
7.6.1 Detailed Description e e 186

7.6.2 Field Documentation e 186
7.62.1 Data e e 186

7.622 Header 186

7.7 _struct_L1_MemoryBlockHeader_ Struct Reference 186
7.7.1 Detailed Description e e 186

7.7.2 Field Documentation e e 186
7.72.1 BlockSize 186

7.72.2 ListElement 187

7.723 ownerTaskID. 187

7724 UsedBytes o e e e 187

7.8 _struct_L1_Packet_ Struct Reference 187
7.8.1 Detailed Description o 188

7.8.2 Field Documentation 188
7.82.1 dataPart 188

7.8.2.2 DestinationPortID 188

7.823 errorCode e 188

7.824 inUse. e e e e 188

7.8.2.5 ListElement 188

7.82.6 OwnerPool 189

7.8.2.77 PendingRequestHandler 189

7.8.2.8 PendingRequestListElement. 189

7.8.29 RequestingTaskID 189

7.8.2.10 SequenceNumber oo 189

7.82.11 ServiceID 189

7.82.12 Status e e e 189

7.82.13 Timeout e e e e e e e 189

7.8.2.14 TimeoutTimer e 189

7.9 _struct_L1_PacketPoolState_ Struct Reference 189
7.9.1 Detailed Description oL 190

7.9.2 Field Documentation 190
7.92.1 PacketDataPool, 190

7.92.2 PacketList e 190

7923 PacketPool 190

7924 Size e 190

7.10 _struct_L1_Port_ StructReference 190
7.10.1 Detailed Description e 191
7.10.2 Field Documentation 191
7.10.2.1 WaitingList 191

7.11 _struct_L1_ResourceState_ Struct Reference 191
7.11.1 Detailed Description 191
7.11.2 Field Documentation e 191
7.11.2.1 CeilingPriority L 191

VirtuosoNext-Designer-1.0.0.0

xii CONTENTS
71122 Locked e e 192

7.11.2.3 OwnerBoostedToPriority 192

7.11.2.4 OwningTaskID o 192

7.12 _struct_L1_SemaphoreState_ Struct Reference 192
7.12.1 Detailed Description 192
7.12.2 Field Documentation e 192
7.12.2.1 Count e e e e e e e 192

7.13 _struct_tracebuffer_ Struct Reference 193
7.13.1 Detailed Description 193
7.13.2 Field Documentation 193
70321 paramO e 193

713222 paraml oL e e 193

70323 param2 e e e 193

70324 param3 193

7.14 L1_BlackBoard_Board Struct Reference 193
7.14.1 Detailed Description 194
7.14.2 Field Documentation e e 194
TA42.1 MESSAZE . . . o o e e e e e e e e e e e e e 194

7.1422 messageNumber Lo o 194

7.15 L1_BlackBoard_HubState Struct Reference 194
7.15.1 Detailed Description 194
7.15.2 Field Documentation 194
71521 board e e 194

7.152.2 dataSize e 194

7.1523 messageNumbero 195

7.16 L1_DataEvent_HubState Struct Reference 195
7.16.1 Detailed Description e 195
7.16.2 Field Documentation 195
7.16.2.1 dataPart e e 195

7.16.2.2 isSeto e 195

7.17 L1_HubNameTolD Struct Reference 195
7.17.1 Detailed Description e 196
7.17.2 Field Documentation e 196
TAT2.10 id . . o e e e e e 196

T17.22 name e e e e e e e 196

TAT23 type . . o oo 196

7.18 L1_MemoryBlockQueue_HubState Struct Reference 196
7.18.1 Detailed Description e e 196
7.18.2 Field Documentation 196
7.18.2.1 blocks e 196

7.18.2.2 blockSize 197

7.18.2.3 freeBlocks 197

70824 mMEMOTY oo e e e e e 197

7.18.2.5 nbrOfAcquiredBlocks 197

7.18.2.6 nbrOfBlocks e 197

7.18.2.7 nbrOfUsedBlocks 197

7.18.2.8 wusedBlocks 197

7.19 L1_MemoryPool_HubState Struct Reference 197
7.19.1 Detailed Description 198
7.19.2 Field Documentation e e 198
7.19.2.1 BlockSize 198

7.19.2.2 FreeMemoryBlockList 199

7.19.2.3 MemoryBlockPool oo 199

7.19.2.4 NumberOfBlocks 199

VirtuosoNext-Designer-1.0.0.0

CONTENTS xiii

7.20

7.21

7.22

7.23

7.24

7.19.2.5 OccupiedMemoryBlockList 199
L1_NodeStatusStructure Struct Reference 199
7.20.1 Detailed Description L. e 199
7.20.2 Field Documentation 199

7.202.1 currentTime 199

7.20.2.2 kernelTickFrequencyHz 200

7.20.2.3 maxNumberOfPacketsInRxPacketPool 200

7.20.2.4 nodePacketCount 200

7.20.2.5 numberOfDiscardedRxPackets 200

7.20.2.6 numberOfHubs, 200

7.20.2.7 numberOflllegalServiceRequests 200

7.20.2.8 numberOfTasks 200

7.20.2.9 numberOfTimesSemaphoreMaxCountReached 200
L1 _PacketData Struct Reference 200
7.21.1 Detailed Description 201
7.21.2 Member Function Documentation 201

7.21.2.1 __attribute__ e e e 201
7.21.3 Field Documentation 201

7.21.3.1 dataSize e e e 201

7.21.3.2 ListElement 201
L1_TaskControlRecord Struct Reference 201
7.22.1 Detailed Description 202
7.22.2 Field Documentation 202

7.22.2.1 AbortHandler 202

72222 Arguments i i e e e e e e e 202

7.22.2.3 ConteXt e e e e e e e e e 202

7.22.2.4 CriticalSectionWaitingList 202

7.2225 EntryPointo 202

7.22.2.6 ImtrinsicPriority L. oo 202

7.22.277 isSuspended 202

7.22.2.8 ListElement 203

72229 RequestPacket 203

722210 TaskID e e e 203

7.22.2.11 TaskInputPort e 203

7.22.2.12 TaskState e e e 203
L1_TaskNameTolD Struct Reference 203
7.23.1 Detailed Description 204
7.23.2 Field Documentation 204

72321 id e e 204

72322 NAME e e e e e e e e 204
L1_WLM_State Struct Referenceo 204
7.24.1 Detailed Description e 204
7.24.2 Field Documentation e e 204

7.24.2.1 currentLoopCount e 204

7.242.2 previousLoopCount 204

72423 0. . . e e e 205

72424 tl . .. e e 205

7.24.2.5 terminationLoopCount 205

7.24.2.6 workloadPeriodCount, 205

7.2427 workloadPeriodLength 205

VirtuosoNext-Designer-1.0.0.0

xiv

CONTENTS

IV Stdio Host Service

8 Module Index

8.1 Modules e

9 Module Documentation

9.1 StdioHostServer
9.1.1 Detailed Description

9.1.2 Function Documentation
9.1.2.1 DumpTraceBuffer W

9.1.2.2 Shs_closeFile W

9.123 Shs_getChar W

9.124 Shs_getlnt W oL

9.1.2.5 Shs_getString. W L.

9.12.6 Shs_openFile W.

9.1277 Shs_putChar W

9.12.8 Shs_putlnt Wo

9.1.29 Shs_putString. W

9.1.2.10 Shs_readFromFile. W

9.1.2.11 Shs_writeToFile W

9.2 Stdio Host Server Component Description

V Graphical Host Service

10 Data Structure Index

10.1 Data Structures e

11 File Index

11.1 FileList oo

12 Data Structure Documentation

12.1 GhsBrush Struct Reference
12.1.1 Detailed Description
12.1.2 Field Documentation

12.1.2.1 colour
12,122 style oo o

12.2 GhsColour Struct Reference
12.2.1 Detailed Description
12.2.2 Field Documentation

12221 b ..
12222 g o oo
12223 1 . e

12.3 GhsPen Struct Reference
12.3.1 Detailed Description
12.3.2 Field Documentation

12321 colour
12.3.22 lineWidth
12323 styleo

12.4 GhsRect StructReference
12.4.1 Detailed Description
12.4.2 Field Documentation

12421 bottom
12422 left e

207

VirtuosoNext-Designer-1.0.0.0

CONTENTS XV
12.42.3 right o e e 225

12,424 10D . . o o e e e e 225

13 File Documentation 227
13.1 src/include/GraphicalHostService/GhsTypes.h File Reference 227
13.1.1 Enumeration Type Documentation 227

13.1.1.1 GhsBrushStyle Lo 227

13.1.1.2 GhsPenStyle 227

13.2 src/include/GraphicalHostService/GraphicalHostClient.h File Reference 227
13.2.1 Function Documentation 228

13.2.1.1 Ghs_closeSession_. W 228

13.2.1.2 Ghs_drawCircle W 228

13.2.1.3 Ghs_drawLine_ W e 229

13.2.1.4 Ghs_drawRect W 229

13.2.1.5 Ghs_drawText W e 230

13.2.1.6 Ghs_getCanvasSize. W 230

13.2.1.7 Ghs_getServerVersion. W Lo 230

13.2.1.8 Ghs_openSession_. W L o 231

13.2.1.9 Ghs_setBrush W 231

13.2.1.10 Ghs_setCanvasSize W e 231

13.2.1.11 Ghs_setPen_.W 232

13.2.1.12 Ghs_setTextColour W, 232

13.3 src/include/GraphicalHostService/GraphicalHostService.h File Reference 233
13.3.1 Macro Definition Documentation 233

13.3.1.1 GHS_VERSION 233

VI Appendix 235
References 237
Glossary 241
Index 245

VirtuosoNext-Designer-1.0.0.0

Part |

VirtuosoNext Fundamentals

Introduction

This document is intended as a manual that describes the use of VirtuosoNext, a network centric Real-
time Operating System (RTOS) for developing embedded real-time applications. However, VirtuosoNext
is more than that. VirtuosoNext was developed using formal modelling techniques from the ground up as
a coherent runtime and programming system for “networked” embedded systems. It fits within a unified
systems engineering methodology based on an “Interacting Entities” architectural paradigm. Almost any
system can be developed following this paradigm, but often the tool support will be lacking. Many tools
exist and many paradigms exist. The issue for the embedded (software) engineer is that each of these tools
and methods have different semantics, making it very hard to combine them and to make sure that no re-
maining errors exist due to subtle side-effects as a result of the subtle differences in the semantics. This
makes using VirtuosoNext particularly interesting for developing high-reliability or safety critical embed-
ded systems. The RTOS kernel and its services were developed using a formal methodology, analyzed to
the essential core and as a result VirtuosoNext has several unique properties that can make a big difference
when developing embedded applications. We name some of the most important ones:

* Scalability: VirtuosoNext applications can be redeployed, mostly by recompilation of the application
source code, from very small single micro controller systems to target systems with a large number
of distributed heterogeneous processing Nodes.

» Extensible. VirtuosoNext can be extended with application specific services and entities without the
need for the user to develop another middle-ware layer. Such services are integrated at the system
level, itself based on a fine-grain microkernel architecture combined with packet switching. New
services are integrated using a meta-modeling approach.

* Distributed operation. VirtuosoNext was designed from the start as a network centric runtime system.
Whether the application Tasks and the kernel entities are placed on a single processing Nodes or are
mapped onto several ones, the user does not need to care about where his Tasks and entities are
mapped (except at configuration time). The system itself takes care of the routing and system level
communication while the application source code is independent of the network and application
topology. We call this a “Virtual Single Processor” runtime model.

 Efficiency. As a result of the formal modelling, the kernel entities and services are very orthogonal
and generic. A major consequence is that the code size is very small (about 5 to 10 times smaller
than equivalent classical implementations). Small code size also means that less time is spend in
executing kernel services resulting in a lower overhead. Code size can be as small as 5 Kbytes while
a fully featured distributed implementation only takes up about 20 Kbytes (processor dependent).

o Safety. All kernel services were modelled at the architectural design using a formal model checker.
The final implementation was also verified using formal modelling to make sure that the implementa-
tion did not introduce potential errors. Thanks to its design based on packet switching, VirtuosoNext
has no issue with memory fragmentation and buffer overflow. If it runs out of memory, the system
will automatically start throttling allowing allocated resources to be freed up again.

* Hard real-time. In VirtuosoNext every operation inherits the priority of Tasks. Tas receive a priority
at compile time and are preemptively scheduled with support for distributed priority inheritance

* Fine-grain partitioning. The Virtuoso kernel can make full use of the MMU and MPU support on
the processor, hereby isolating each Task in memory, as well as preventing unauthorised access to
memory regions, unles hey are explicitly shared. The overhead for this safety support is very small.

* Fault-tolerance: the fine grain partitioning can be used in conjunction with real-time fault recovery.
Processor exceptions can be trapped allowing to recover the Task’s state and to have it restarted in
microseconds.

* Productivity. To relieve the programmer from tedious code writing (and also to reduce the error rate),
VirtuosoNext adopted the principe of automatic code generation. Datastructures, initialisation code
and build scripts are automatically generated from a higher level description and metamodels that
contain all processor and board specific information.

As one can see, VirtuosoNext is much more than just another RTOS. It is a universal real-time programming
system for embedded applications. It is also supported with easy-to-use tools like the Visual development
Environment (VirtuosoNext-VE) supporting automatic code generation and visual tracing and debugging.

Scope

The scope of this document is limited to developing VirtuosoNext based applications. No detailed knowl-
edge of its internal functioning is needed.

VirtuosoNext-Designer-1.0.0.0

Chapter 1

General Concepts

1.1 Background of VirtuosoNext

The main purpose of VirtuosoNext is to provide a software runtime environment supporting a coherent and
unified systems engineering methodology, based on Interacting Entities,

In VirtuosoNext the dominant active Interacting Entity is a software entity, called a “Task”. Other entities
are specific instances of generic “Hubs” and they play an important role in the interactions between the Task
entities. All Tasks interact only through Hubs, i.e. there are no direct Task-Task interactions, but specific
types of Hubs will provide specific semantics for the kernel services used by the Tasks to interact. As such
the basic functionality of a Hub is to synchronise between Tasks. The specific behaviour is determined by
the logical predicates that govern the synchronization and by the action predicates that are invoked once a
synchronization has taken place. This allowed us to redefine Hub services as the traditional services one
finds in other RTOS, e.g. Events, Semaphores, Ports, FIFOs, Resources and Memory Pools. An additional
one is a Packet Pool. Another difference is that this allows the user to integrate his own services in the
RTOS system and that some services are available as asynchronous services.

A Task will be running on a computing device (CPU + RAM + Peripherals + etc.), called a “Node”.

There may be many Tasks running on a single Node. These Tasks may be independent or synchronising
and communicating with each other. In other words, it is possible to build a network of Interacting Entities
using only one Node, every Task virtualising a complete CPU instance.

Besides Tasks, VirtuosoNext provides services and Hub Entities allowing Tasks to synchronise and to
exchange data using a specific behaviour for each type of Entity. This behaviour represent the system
level interaction from which an application can build higher level Interactions, e.g. like communication
protocols that consists of several Put/Get pairs.

VirtuosoNext is a distributed RTOS and contains a build-in router and communication layer. While hidden
from the application programmer, this allows Tasks to synchronise and to communicate transparently across
a network of processing Nodes. By design this means that one Node can be part of local network that is
connected though internet with another Cluster at the other side of the world. This support for a transparent
distributed operation however is an option that does not prevent using VirtuosoNext on a single CPU.

For the application programmer, there is no logical difference between Tasks running on the same Node
or on multiple Nodes. He programs in a network topology independent and transparent way, except when
physical differences dictate otherwise.

As such, VirtuosoNext comes with a PC hosted simulator. This “hostnode” can be integrated in an em-
bedded system just like any fully embedded Node and allows embedded Nodes access to host services in a
transparent way.

6 CHAPTER 1. GENERAL CONCEPTS

e Site 1 N
/ Cluster 1 \ / Cluster 2 \

Node 1 Node 2 (hub) Node 4 (hub) Node 5
Node 3 fNode 7 (hub) Node 6

e A

e Site 3]<
/ Cluster1 / \ / Site 2

\~

Node 11
Node 10 (hub) 1 Node 8 (hub) Node 9

N—

/ Cluster 2 \

Node 13

Node 12 (@ (hub)

"—————

Figure 1.1: Generic structure of a distributed computing system

1.2 Physical structure of the target processing system

Figure 1.1 represents the physical structure of a generic and distributed computing system from the point
of view of VirtuosoNext.

A target system is hierarchically composed of the following three layers:

* Sites, consisting of
* Clusters, consisting of

* Nodes, hosting: Entities (e.g. Tasks, Hubs, ...)

The Nodes communicate with each other via various physical communication channels (internal bus, 10
buses, networks, 10 Pipes, etc). There are also Nodes that fulfil the role of communication Hubs providing
communication between different clusters in the network. Note that these three layers will often correspond
with three domains where the physical parameters of the communication layer will differ in performance,
bandwidth and communication latency. From a logical point of view however there is no difference at the
application level. Only the timing will differ.

1.3 Layered architecture of VirtuosoNext

VirtuosoNext is being developed using a scalable architecture. Each higher level layer builds on the lower
layers and provides a specific functionalities. Given that each layer adds functional behaviour, one should
view these layers as semantic layers instead of strictly functional ones. The layering however is still re-
flected in the use of different system Packets (L0, L1 and L2 with LO and L1 merged in the implementation).

VirtuosoNext-Designer-1.0.0.0

1.4. THE LOGICAL VIEW OF THE L1 LAYER 7

e LO — The lowest semantic layer. It provides the basic primitive services, such as Task scheduling,
routing of packets and a simple mechanism for intertask synchronization and communication. When
there is more than one Node, it also provides an inter-Node communication mechanism.

e L1 — The next semantic layer. It provides flexible Task synchronization and coordination services.
This layer can be used to emulate existing third party RTOS. L1 services include the layer LO ser-
vices.

e L2 — The highest semantic layer. This layer can support user-defined services, often supporting
dynamic behaviour. Given that it may include widely distributed services, the communication delay
can become important and the real-time behaviour can become “soft” real-time.

VirtuosoNext operates at the LO layer by using just Ports and Packets. The Ports are used to exchange
Packets between Tasks and synchronise by a Put_ and Get_ pair of service requests. The L1-Packets are
atomic units containing a header and a payload zone for application specific data. The kernel mostly
operates by shuffling the packets around while updating or using the header field information.

To implement the full L1 layer a generic Hub entity is used. It provides services with different functional
behavior ranging from simple Event synchronization to a more complex behavior that includes buffering
of data and copying it network wide.

1.4 The logical view of the L1 Layer

The distributed environment, described in the sections above is based on the existence of a fast and uni-
fied communication layer. The VirtuosoNext Layer L1 therefore is defined as providing the following
functionalities:

1. aPacket-switching communication layer using Inter-node Links and inter-node communication Routers;
2. a Kernel to provide functional services and operating resources to Tasks;

3. a Task Scheduler to schedule the Tasks according to a real-time scheduling policy.

The logical structure of an VirtuosoNext based system on a network of processing node is shown in Figure
1.2. For the application it will look like a Virtual Single Processor.

1.4.1 Principle of synchronization and communication

The distributed environment, described in the sections above is based on the existence of a unified com-
munication layer, independent of the underlying communication protocol or the hardware. In terms of
this communication layer, an abstraction of the physical inter-node communication medium is called an
Internode Link.

Each Node can have a number of Internode Links to other Nodes. Logically, every Internode Link is a
point-to-point connection to another Node. It consists of a transmitting and receiving links, called LinkTX
and LinkRX respectively. Self-loops are allowed as well as multiple Links between the Nodes. If there
are no links, e.g. when there is only one Node in the system, the routing function is void and the system
works in an identical way. Note however, that such an Internode Link is not necessarily a physical point-
to-point connection. It can be as well a shared memory that all Nodes have access to, or it can even be a
virtual connection when e.g. some Nodes are hosted on top of legacy operating systems and VirtuosoNext
communication uses “tunneling” (e.g. by calling the native socket communication) to connect the Nodes.

Tasks interact with the Internode Links via a standardized interface. The interaction to the related hardware
is hardware specific and should not influence the interface.

VirtuosoNext-Designer-1.0.0.0

8 CHAPTER 1. GENERAL CONCEPTS

Node 4
[Tt] [Tz]

R L1_MemoryPool L1_PacketPool

[L1Port | | L1_Event |[L1_Semaphore ||L1_Resource| | L1_FIFO |

‘ L1_Mailbox L1_UserHub L1 Hub Entities
| Kernel Task | | Task Scheduler |
INTERNODE LINK 1 INTERNODE LINK 2 INTERNODE LINK 3

LinkRX 1 | LinkTX 1

LinkRX 2 | LinkTX 2

LinkRX 3 | LinkTX 3

Link Driver Link Driver Link Driver
HW ISR HW ISR HW ISR
Node 1 Node 2 Node 3

Virtual Single Processor System

Figure 1.2: Logical structure of a distributed VirtuosoNext system

VirtuosoNext is based on a Packet-switching architecture. This means that Packets of a fixed size (that can
be different for each application) are passed from one Entity to another Entity. As Tasks may be located
on different Nodes, a Packet may be passed from one Node to another. Coming from a source Node to
a destination Node, the Packets may pass through a number of intermediate Nodes. For the application
programmer however, Packets are sent to an intermediate Entity and are received from an intermediate
Entity. This effectively isolates Tasks from each other and increases the scalability of the system. At the
application view VirtuosoNext provides services with specific semantics and the underlying Entities and
Packets can be “hidden” in the implementation and are encapsulated in the services provided.

To provide the routing of Packets from Node to Node, there are inter-node communication Routers in the
distributed network. The Router is a function present on every Node. This function provides a mapping
between destination Nodes and Internode Links to be used by VirtuosoNext to reach the destination Node.
The router itself is invisible to the application programmer. As all VirtuosoNext services are by default
“distributed”, the routing is void when routing between local Tasks.

1.4.2 Scheduling Tasks and Task interactions through the RTOS kernel

To timely provide the Tasks with the required operating resources (RAM, CPU time, functional services,
etc.), VirtuosoNext has a Kernel with a Task scheduler.

The Kernel is the logical entity that:

1. provides services to the Tasks and

2. also schedules the Tasks according to a real-time scheduling policy.

VirtuosoNext-Designer-1.0.0.0

1.5. INTER-TASK INTERACTION

TaskScheduler

provides services to

«subsystem»
ApplicTask

passes packets to

«subsystem»

KernelTask

Router

—

«subsystem»
RX Driver

1
1.7

—

switches the context to

requests services from

sends remote packets via

dispatches packets to

«subsystem»
TX Driver

Figure 1.3: Functional relationship between entities of the distributed system

Although the functions are logically separate, in the practical implementation they are intertwined in Vir-

tuosoNext.

From the point of view of the functional relationships between the above mentioned entities, the software

runtime environment on a Node consists of:

¢ A Task scheduler that switches the CPU context between Tasks

* (One or more) Tasks that request services from the Kernel (using a Packet, but that may be hidden)

* The Kernel that provides these services. When one of the Tasks is remote, it passes on the service

request to the remote Node

e When remote services and Entities are involved, Routers are used for passing on the Packets to
Internode Links, respectively to receiving them from Internode Links

¢ Internode Links have Transmitting (LinkTX) and Receiving (LinkRX) logical Pipes

e LinkTX and LinkRX are provided by the Link hardware, managed by (hardware) specific link drivers
and interrupt service routines (Link driver, HW Interrupt Service Routine (ISR))

The relations are represented in Figure 1.3.

1.5 Inter-Task interaction

An inter-task interaction consists of two parts: putting a Packet to a Hub and getting a Packet from the
same Hub. These Packets are actually carriers for service requests and will be invisible to the programmer
(except when using asynchronous services). When no data is interchanged (data size = zero), we call such

VirtuosoNext-Designer-1.0.0.0

10 CHAPTER 1. GENERAL CONCEPTS

an interchange of Packets “synchronisation”. When data is exchanged as well, we call it communication
but more complex semantics are possible as well. Note however, that at the level of L1, this is an issue for
the application code running in the Tasks. From a point of view of the Kernel and the Hub, just a Packet has
been interchanged although in the implementation, just the relevant header fields and databytes are copied
from one Packet to another.

A Port provides a minimum but complete functionality that includes synchronization and communication.
It is really an instance of a more generic mechanism that was called a Hub. The Hub entity also provides
services like Events, Semaphores, FIFO queues, Ports, Resources, Data Events, Memory Block Queues,
Black Boards, and Memory Pools. The semantic differences are mainly determined by the actions associ-
ated upon synchronization. We call these actions the “Synchronising Predicate” and the action that results
from it, i.e. the requested service, the “Action Predicate”.

The L1 Entities can be classified in groups as shown in Table 1.1.

Table 1.1: Interactions between Tasks and Hubs.

Hub type Request type | Guard Action
Port Put Waiting Get request Both Task rescheduled,

Packet exchanged
Port Put No waiting Get request Task enters WAIT state
Port Get Waiting Put request Both Tasks rescheduled,

Packet exchanged
Port Get No waiting Put request Task enters WAIT state
Event Put Event = FALSE Event = TRUE, Task rescheduled
Event Put Event = TRUE Task enters WAIT state
Event Get Event = TRUE Event = FALSE, Task rescheduled,
Event Get Event = FALSE Task enters WAIT state
Semaphore Signal Semaphore count < MAXINT Semaphore incremented,

Task rescheduled
Semaphore Signal Semaphore count = MAXINT Task enters WAIT state
Semaphore Get Semaphore count > 0 Semaphore decremented,

Task rescheduled
Semaphore Get Semaphore count = MAXINT Task enters WAIT state
Resource Lock Resource has no owner Task Task becomes owner,

Task rescheduled
Resource Lock Resource has owner Task Task enters WAIT state,

priority inheritance applied
Resource Unlock Resource has no owner Task Task rescheduled,

return code RC_FAIL
Resource Unlock Resource has owner Task Task rescheduled,

return code RC_FAIL

if owner Task different from self
FIFO Enqueue Count FIFO entries Task reschedules,

between 1 and maximum data enqueued
FIFO Enqueue Count FIFQ entries = maximum | Task enters WAIT state
FIFO Dequeue Count FIFO entries Task reschedules,
between 1 and maximum data dequeued

FIFO Dequeue Count FIFOQ entries = zero Task enter WAIT state
Packet Pool Get Packet available Task reschedules,

Packet removed from Pool
Packet Pool Get No Packet available Task enters WAIT state

Continued on next page

VirtuosoNext-Designer-1.0.0.0

1.5. INTER-TASK INTERACTION

11

Table 1.1 — continued from previous page

Hub type Request type | Guard Action
Packet Pool Put Task reschedules,
Packet returned to Pool
Memory Pool Get Memory block available Task reschedules,
block removed from Pool
Memory Pool Get Memory block unavailable Task enters WAIT state
Memory Pool Put Memory block available Task reschedules,
block returned to Pool
Data Event Put Event = FALSE Event = TRUE,
Data copied to Hub,
Task rescheduled
Data Event Put Event = TRUE Event = TRUE,
Data copied to Hub,
Task rescheduled
Data Event Get Event = TRUE Event = FALSE,
Data copied to Task,
Task rescheduled
Data Event Get Event = FALSE Task enters WAIT state

Memory Block Queue | Put FreeBlocks > 0 FreeBlocks decremented,

FullBlocks incremented,
Task rescheduled

Memory Block Queue | Put FreeBlocks = 0 Task enters WAIT state

Memory Block Queue | Get FullBlock > 0 FreeBlocks incremented,
FullBlocks decremented,

Task rescheduled

Memory Block Queue | Get FullBlocks = 0 Task enters WAIT state

Black Board Put MessageSize = 0
Data copied to Hub,

Task rescheduled

MessageSize = Task MessageSize,

Black Board Put MessageSize > 0
Data copied to Hub,

Task rescheduled

MessageSize = Task MessageSize,

Black Board Get MessageSize > 0 Data copied to Task,

Task rescheduled

Black Board Get MessageSize =0 Task enters WAIT state

In general, we can see that the generic mechanism is one of interaction between a Task that makes some-
thing available (the “put” operation) and a Task that wants to “get” it. Both are requesting the service
through an intermediate Hub Entity via the kernel Task. In the context of common language used for such

LEINTS LEINT3 LEINT3

services, the “Put” operation can be called a “put”, “enqueue”, “insert”, “release”, “raise”, “free”, etc with
the “Get” operation can be called “wait”, “get”, “lock”, “dequeue”, “read”, “allocate”, etc. In all cases one
side of the interaction will make “something‘“‘available on which the other side can wait. For some services
no explicit synchronization is needed while for some services two steps are needed. One in which both
sides synchronise and the ‘something” is made available (e.g. with reservation in a waiting list) with a sec-
ond step during which the “something” is actually obtained. The actual transfer from one side to another is
governed by a Synchronising Predicate filter operation that is specific for the type of service and interaction
Entity. If a data transfer and buffering is involved, it is to be seen as a side-effect of the synchronization
performed by the matching filter. Figure 1.5 shows the available Hub types in VirtuosoNext 1.6.

LI

In most cases the put request is performed by one Task while the get request is performed by another Task.

VirtuosoNext-Designer-1.0.0.0

12 CHAPTER 1. GENERAL CONCEPTS

Put Service|(via Hub) Get service (via Hub)

receive Packet from
Hub
receive Packet

v
H u b read header and data
from Packet
Process the service request
using the Action Predicate
send Packet to Hub and verh> \l/
Synchronising Predicate

< de-allocate Packet

allocate a Packet or use
a preallocated Packet

Process the service
request
put header and data
into Packet

send Packet

(sending Task) (receiving Task)

®

Figure 1.4: Generic scenario of a service request using the Hub entity

However, as the interaction is through Hubs, it can as well be that e.g. driver Tasks or hardware specific
ISR put a Packet in a Hub. However, while an ISR can insert a Packet into a Hub on which a driver Task
could wait to Get from, no ISR should attempt to Get a Packet from a Hub. The reason is that ISRs are not
allowed to wait (polling is just burning cycles and monopolises the CPU when done inside an ISR) while
in such a set-up no other Task can ever insert a packet as the ISR will monopolise the CPU. If an ISR needs
to Get data it should get this data from an associated Driver Task that itself can wait it to Get from a Hub.

The general concept of a generic Hub is illustrated again in Figure 1.6

As VirtuosoNext supports distributed systems, by default, the interacting Tasks and Hubs can be located on
different Nodes. For example, the Puting Task can be located on Node A, the receiving Task can be located
on Node B and the Hub can be located on Node C. The data associated with such an interaction can even be
located on still other Nodes as memory pools are also distributed. It is even possible to accept an interrupt
on one node, passing it on via the network to another node and having the interrupt being processed on that
other node.

1.6 Application specific services

Although not part of this manual, VirtuosoNext Hubs and their associated services can be customized in
an application specific way without requiring a rebuild of the kernel. The developer needs to specify the
synchronization predicate function and predicate function as well as the associated Hub states. The sytem
generator needs to be adapted as well. This capability is decribed in the RTOS extension and porting
kit. On the application level this approach has many advantages. First of all, it provides for more safety
and scalability than with a traditionally designed RTOS. It also provides more performance as it avoids
the need to write a middleware layer, often on top of the underlying OS and requiring often multiple ser-
vice invocations to achieve the desired behaviour. Hence VirtuosoNext can be adapted to become another

VirtuosoNext-Designer-1.0.0.0

13

1.6. APPLICATION SPECIFIC SERVICES

sad£31-qny Juarepip oyl jo uonejussardar [eorydeln) :G 1 231

YIASNVUL VL1VA + NOILVSINOYHONAS

| |
| |
| I
¥=/S (N-N) 3nano o4id | ¥=s 700d AYOWIN |
.y |
o o N
1NNOD an= | N |
1INNOD = _
aIM I 1
@ sIM I M T |
PIM
| b I
-1 _ [1-01)1NNOD _
[aN-11INNOD | I
_ | Ouawmo | _
ajealpaid _ (oradbued _
Buisiuoiysuig | |
| |
ejeq Jo0 | (1) 3048NOS3Y |
[aNlLsin ¥34d4ng 40 1SIT @3IMNIT |
|
| |
I I
||| -
NOILVSINONHONAS " S30UNOSIY “ ployseiys Joug 1 |
¥=/S (N-N)IYOHJVIN3S y=/s (1-1)IN3A3 y=/s (N-N)LyOd | [w=s (N-W30uNOS3H I (N-N) GnH duauag “
I |
L FL—— - - Ll I,] o [_
1-0. — - e T M M _
™ Dol | " . _ ™M P S _
e M M | Dol ! | |
© s il @) O) LM
TR I | sjesipaid _
6 A
I | mnoa (L e i
I | I
_ | uamo | _ _
ajedlipaid ajedlpaid ajedlipaid _ ajedipaid _ _
Buisiuoiyouhs Buisiuoiysuhs Buisiuoysuhs | Buisiuoayosuis | |
uonoy ajedlpaid | onidBuNIeD | I
I | I
| | |
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII A b ____

VirtuosoNext-Designer-1.0.0.0

14 CHAPTER 1. GENERAL CONCEPTS

Data needs to ;
be buffered h\—ﬂ Buffer List ‘
Prioity Inheritance | CeilingPriority ‘
For resources —4>{ Owner Task ‘
For semaphores 74»{ Count ‘

e /y{ Predicate Action
Synchronisation —|

Synchronising
— Predicate

Synchronisation

Waiting Lists

Threshold —T-

Generic Hub (N-N)

Figure 1.6: General conept of the generic Hub

Virtual Single Processor
Application View Node Independent

L]

Receiving a
Packet

A

Hardware Layer (1/O)

Communication Carrier > <

Figure 1.7: Possible distribution of Entities, involved in Task Interaction

VirtuosoNext-Designer-1.0.0.0

1.7. A NEW CONCURRENT PROGRAMMING PARADIGM 15

RTOS as well, although the semantics might need some tweaking as most RTOS cannot support distributed
environments (e.g. because they pass pointers to local memory in the service calls).

1.7 A new concurrent programming paradigm

The fact that one can create his own services, all based on a universal and generic “Hub” entity, makes
that VirtuosoNext is much more than a network-centric RTOS. The concept of Tasks and Hubs embodies
the fundamental concepts one needs to write concurrent programs, whether the target is a single processor
system, a multicore systems, a parallel processing system or a widely distributed and loosely coupled
system. This universal character provides for a natural way of programming such systems. Programming
is in essence an activity whereby a model of a system is developed. Most systems (technical as well as
non-technical ones) are naturally described as a set of Interacting Entities. In VirtuosoNext, the main
Entities are Tasks and Hubs and the services they provide are the interactions. Interactions can be quite
complex, but most interactions while consist of a synchronization point, guarded by a logical condition.
When synchronisation has taken place, in a second step the real desired interaction will happen. E.g. it can
allow a waiting entity to resume its operation, or information and/or data can be transferred or an action
will be executed that acts on the external world (e.g. a motor is started). In VirtuosoNext this interaction
behaviour is neatly separated and hence it is functionally scalable. Hubs are also separated from the Tasks,
allowing scalability across networked Nodes.

One could argue that this type of concurrent programming is not really new. Indeed, a predecessor product
(called Virtuoso at the time) allowed a similar programming style, but it was practically impossible to
add new services. Virtuoso itself had found its inspiration in CSP (Communicating Sequential Processes),
a process algebra thought out by C.A.R. Hoare. In CSP, Processes interact only synchronously through
unidirectional channels. When they do, data can be passed from one process to the other and both processes
can continue. In Virtuoso as well as in VirtuosoNext, this behaviour was externalized, as well as more
complex semantics are supported. The Hubs are also independent of the Tasks, whereas in CSP the channels
are tightly coupled between the processes. Hence, we could argue that VirtuosoNext are a pragmatic
superset of CSP. Although the VirtuosoNext semantics were formally modelled and verified, we claim less
rigour than with the strict semantics of CSP. The benefits obtained are a higher usability for real-world
programming and more abstraction from the underlying implementation.

1.8 Inter-Node interaction

VirtuosoNext provides topology independent interaction between Tasks. All services, except when dictated
otherwise by hardware dependencies, are from the application’s Task point of view independent of the
location in the network of Nodes. This applies e.g. to Task management services as well as to the L1
interaction Entities. The link hardware layer may implement the communication very differently from one
Platform to another.

While in VirtuosoNext Tasks can interface directly with the hardware via Interrupt Service Routines, most
often driver Tasks will implement the higher level functionality the hardware interfaces . In particular, when
multiple Nodes are present in the system, these Nodes will be able to exchange data through a dedicated
software supported hardware mechanism. Independently of the hardware implementation, we call these
dedicated communication mechanisms LINKS. VirtuosoNext defines dedicated Tasks, called Link Driver
Tasks, that implements the VirtuosoNext system level communication protocol. Of course, in general,
hardware will be accessed through a combination of an ISR and a Driver Task, but then a hardware and
application specific protocol will be used.

* A Link Driver Task is the only way to initiate transparent inter-node Link communication

VirtuosoNext-Designer-1.0.0.0

16 CHAPTER 1. GENERAL CONCEPTS

Interacting Task

1

Task Input Port

Inﬁﬁt”;lm Kernel Task - Hub
Driver Input Port
Vi
Link Driver Task
HW ISR Layer

z

Figure 1.8: Interactions between HW, ISR Layer, Driver Task and application Tasks.

Hardware

* Any Link Driver Task communicates only to other Tasks via a dedicated Port associated with it. This
Port is called as a Task Input Port.

¢ Any Task communicates with a Link Driver Task only via a dedicated Port associated with it. This
Port is called the Driver Input Port.

* The HW itself is controlled and accessed by the ISR layer. This layer may communicate with the
Driver Tasks through shared memory and dedicated event signalling services.

* The Tasks, Link Driver Tasks and ISR layer interact with each other ONLY via the Kernel Task.

The interaction scheme is illustrated in Figure 1.8.

VirtuosoNext-Designer-1.0.0.0

Chapter 2

Functional Design of the L1 Layer

Figure 2.1 presents the functional model of the VirtuosoNext Layer L1, it is not a complete description of
all the available services.

2.1 Task interactions

Entities that interact are a synchronizations and communications between the Tasks via intermediate Enti-
ties (e.g. Ports, Events, Semaphores, FIFOs, Hubs, etc.). To simplify the terminology, we call these Task
Interactions. All these Entities can be derived from a common generic Entity (at least conceptually) that
we called a “Hub”. Such a Hub provides first of all “synchronization” between “Puting”and “Receiving”
Tasks. Synchronisation happens through the use of a “matching filter” we called the Synchronisation Pred-
icate. It verifies that the conditions for synchronization are fulfilled resulting in e.g. a Task becoming ready
again. From the application point of view, one can consider that during the synchronization a “resource”
is made available from one Task to another, allowing the latter to continue when it gets the resource. The
resource itself can be the notification that a certain event has happened, a piece of data or e.g. a logical
entity that needs to be protected for atomic access.

Once synchronization has happened, the system will call the interaction specific Action Predicate. E.g.
making a Task ready again, returning data or e.g. copying data from one memory area to another one. In
general, one can imagine that a Hub can be used for very application specific interactions. An example
would be that an alarm signal would be monitored but when a threshold level is reached a command is
directly Put to an actuator to shut down a critical part of the application. This can be done without a
middle-ware layer resulting in much faster reaction time? Because most of the code is system code, the
risk for errors is also lower.

Hubs are used as synchronisation Entities between Tasks and operate by use of Packets sent and get by
Tasks. These packets are most fo the time pre-allocated Task Packets and hence hidden in the API. Only
for asynchronous services do we have to make the Packets explicit as multiple synchronization can be
pending and hence a packet must be used that comes from a general Packet pool. Hence, Hubs also
decouple Tasks when interacting and they can be located physically on different Nodes than the interacting
Tasks. As a result, Tasks are isolated from each other while this mechanism is inherently scalable and
topology independent.

2.1.1 Logical view of Task

In VirtuosoNext, the software runtime environment can run many Tasks on a single Node. Each Task is a
separate entity identified by its TaskID. The Task ID is a globally defined unique identifier in the distributed

18 CHAPTER 2. FUNCTIONAL DESIGN OF THE L1 LAYER

Not USED for application tasks with
single phase services
Task ~~

-RequestPacket R —=
-Priority has a Task Input Port

-TaskID L g WaitingList
-TaskState 1 *
-TaskContext
+EntryPoint() *

_ 1 1 -Makes Runqing
-Requests Services from

L1 Kernel Services L1 Scheduler

-L1_ReadyList

- -Makes Running

+L1_PutPacketToPort_(N)W(T)(A)()
+L1_GetPacketFromPort_(N)W(T)(A)() 1 -Make$ Running
)

+L1_Suspend/ResumeTask_W(
+L1_Start/StopTask_W()
+L1_SleepTask_WT() 1
+L1_AllocatePacket_(N)W(T)()
+L1_DeallocatePacket_W()
+L1_WaitForPacket_(N)W(T)()
+L1_Raise/TestEvent_(N)W(T)()
+L1_Signal/TestSema_(N)W(T)() 1
+L1_Lock/UnlockResource_(N)W(T)()
+L1_Enqueue/DequeueFifo_(N)W(T)()
)

+L1_AllocateMemoryBlock_(N)W(T)(
+L1_DeallocateMemoryBlock_W()
+L1_Move/CopyData_W()
+L1_TransferMemoryBlock_W()
1
* -Inserts Packets to Port of
\/ |
L1_Router
-L1_RoutingTable
-~ *L1_routeTask() 1 -Inserts Packets to
_limerPoo -allocates Timers from 1
1 _TimerFreeList 1 1 -Gets Drivier Input Port
-L1_getTimer() ﬁ 1 -Calls — F1_HUb
-L1_releaseTimer() L1_Kernel_Task 1 [|-Waiting List
1 1 -SynchronisationPredicate
1 L1_KernellnputPort 1 -SynchronizationAction
T ~]+L1_KernelLoop() -Inserts Packets to -State
L1_NodeTimerList -starts/stops Timers
-Inserts Packets to 1
-L1_SetTimer()
-L1_ResetTimer() 1
* -Inserts Packets to Port of)
-Requests Services from
HW ISR Link Driver Task -has a Driver Input Port
-PreallocatedPacket | 1 -WaitingList
+EntryPoint() 1 *
. 1 -Interfaces with
1
-Raises
Hardware
. Unit

Figure 2.1: Functional model of VirtuosoNext

VirtuosoNext-Designer-1.0.0.0

2.1. TASK INTERACTIONS 19

system. A Task is therefore defined as:

» A Task is a uniquely identified functional resource. It has its own context and can be considered as
an independent unit of execution.

e A Task can issue service requests. These are implemented as a local function within a Task’s
workspace. The first instruction of a Task’s function is called the entry point of the Task.

The Task Context is defined by the following two parts:

* Its Workspace (often called Stack Space). This is an area of data memory that is involved in the
logical operation of the Task. Normally, the logical data of a Task context is hardware independent.
The logical data is an explicit part of the context that the Task manages itself and hence contains only
data and variables that are only visible to the Task itself.

* Its CPU Context is the physical context of the Node. This is a set of data units that precisely defines
the current state of the CPU. The CPU Context is an implicit part of the Task Context, not directly
manipulated by the Task, but by the compiler, the CPU and its peripherals. Usually the CPU Context
consists of the state of the essential CPU and other HW registers, like the Instruction Pointer (IP),
Stack Pointer (SP), the Accumulating Registers, and the I/O registers. The CPU Context is specific
to the hardware (CPU + peripheral units, e.g. state information).

On any traditional CPU, only one Task can execute at a given time on a given Node. This is not a restriction
of VirtuosoNext but the result of the von Neumann architecture of most CPUs. This means that if there
are many Tasks running on the same Node, the scheduler will divide the available processing time over the
Tasks according to a Task scheduling policy. When using a Priority based scheduler the priorities are to be
assigned by the application developer who has to assure that all Tasks can meet all deadlines.

During their operation the Tasks may request the Kernel for services such as Putting or receiving Packets
via Ports. Typically, the Tasks will wait for events like the completion of such requests. Note that Tasks
can run independently without issuing any service request, although this can lead to starvation for other
Tasks. The “data” fields of a sent or get Packet may be “empty” (i.e. pure synchronization without data
communication exchange).

A Task starts by being started from another Task or during kernel initialization. It may have finished, which
is called STOPPED

Hence, a Task is further defined by its state. It is an operating resource that is always in only one of the
following states, managed by VirtuosoNext:

INACTIVE (the initial state)

RUNNING (the Task is running on the CPU)

WAITING (for a service request to complete)

READY (to run and hence waiting to run in de ready list)

SUSPENDED (orthogonal state to prevent the Task from running)

STOPPED (used before a Task is reinitialized)

Note that the normal states in operation are RUNNING, WAITING, READY and STOPPED. The first
three ones are sometimes collectively referred to as “ACTIVE”. The SUSPENDED state is the result of an
explicit suspend request and is orthogonal to the normal states. This means that a waiting status remains
possible when the Task is being suspended. It can only be changed by a resume request issued by by
another Task. Hence, a Task should not suspend itself as the suspend state is introduced mainly to be able

VirtuosoNext-Designer-1.0.0.0

20 CHAPTER 2. FUNCTIONAL DESIGN OF THE L1 LAYER

to handle exceptional application level conditions that require e.g. to preventing a Task from doing any
potential harm.

Note also that stopping a Task is a much more drastic operation as this will also destroy the whole Task
context and all information will be lost. Therefore precautions are needed to stop a Task in a correct way.
This is typically achieved by calling an abort handling function before a new Task context is created.

When many Tasks run on the same Node, they compete for the CPU time in order of their Priority. A
higher Priority means that when several Tasks are ready to run, the one with the highest Priority will run
first. Hence, a Task is further defined by its Priority

A Task is an operating resource that has a PRIORITY. A Priority has a value in the integer range from O to
255, with 0 being the highest Priority.

To provide many Task instances with the same (local) function, VirtuosoNext allows Tasks to start with a
list of Task specific arguments. The functional code of the Task must be reentrant as well.

Finally, at the system level but hidden from the application programmer, each Task including the Kernel
Tasks and Driver Tasks, have a dedicated Input Port, This Port is only accessed by through and by the
Kernel.

2.1.2 Logical view of Packets

In VirtuosoNext, the interacting Tasks interchange Packets of a fixed size. The “fixed size” of a Packet
means that the physical size of Packet is always the same for a given network and is defined at system
generation time. The real size of the interchanged data in the Packet can not be greater than this size but
the system can use multiple Packets to execute larger data transfers. A Packet contains so called header
information that includes a number of header specific fields, including the size of the user data (sometimes
called payload). The Packet size is defined at compile time and can be application specific but it can never
be smaller than the space needed for the header fields.

In each concrete case, the interchanged Packet is also supplied with the exact length of the embedded
interchanged data.

Hence, a Packet is an entity that consists of:

* A fixed size header including:

— Service specific fields
— the (user) Data Size field

* The data limited in length to the Data Size field

* Remaining unused space of the data portion of the packet (in any).

The Data Size of a Packet can be zero or at most be equal to the Packet Size minus the size of Header. The
user is warned that the system will only copy the data in the payload section after synchronization in a Hub
when this is part of the semantics of the service. E.g. with an Event no data will be copied, but with a Port
data will be exchanged limited by the datasize parameter.

The basis of VirtuosoNext is the L1_Packet, with an application specific defined size. Such a Packet is
sufficient to implement the L.1_services like Task scheduling and Puting and receiving Packets to and from
a Hub.

In the case of all “single-phase” services, these Packets are statically allocated at compile time. For some
services, i.e. the “two-phase” services, the calling Task needs to use a dynamically allocated Packet. This
Packet is allocated first from a Packet Pool that is managed by the local Kernel Task on the node. For
more explanations on these single-phase and two-phase services see the service descriptions further in this
document.

VirtuosoNext-Designer-1.0.0.0

2.1. TASK INTERACTIONS 21

NOTE: In the text often the terms Put_ or Get_Request_Packet will be used. Often, this is still the same
physical Packet but whose function is changed by an update of its header fields depending on the status of
its processing.

2.1.3 Logical view of the generic L1 Hubs

When requesting a L1 kernel service, VirtuosoNext implements it by Puting a Packet to the specified entity
called the L1 Hub. If the service requires synchronization, a reference to the packet will be stored. In the
implementation, copying of Packets is avoided and a pointer to the Packet will be passed. This implies
that a Packet is owned by the Task that uses it to avoid that multiple Tasks can modify a Packet’s content
or that the kernel Task assures that only one Task can write to the Packet at a given time. Similarly, when
receiving a Packet, a Task Gets it from the specified Hub. The Packet having been delivered to the Hub by
a Putting Task. Hence, a Hub is defined as follows: “A Hub is an identifiable entity with a globally unique
identifier in the distributed system.”

The purpose of a Hub is defined as follows:

* A Hub is an entity used to provide services between interacting Tasks, i.e. the Hub will implement
the interaction. At the kernel level this behaviour is achieved by interchanging Packets between
interacting Tasks through the Hub.

» The synchronization, eventually data exchange, is handled by the Kernel and depends on the specific
behaviour defined by the packet header fields that are specific to the service request.

If a Task Puts a Service Request to a Hub, and no other Tasks have yet supplied a matching service request-
Packet to that Hub, then the requesting Task will wait until such matching request Packet arrives at the
Hub. This will be detected by the matching filter. Note that any number of Tasks (more than one) may Put
service requests (i.e. Packets) to the same Hub at any time. Note, that this behavior is symmetric, although
the behavior is often specified in terms of “Putting” Tasks en “receiving” Tasks. Hence, in the general case
there will be waiting lists on both sides of a Hub.

“A Hub is an entity that buffers the service requests using Packets until synchronisation occurs.”

The sent and get service requests are “buffered” in a Hub by means of a Priority-sorted list of Packets. The
Priority of an element in the list is inherited from the requesting Task.

Above paragraphs explained the basic functionality of a Hub: synchronization between Tasks, making
resources available and Tasks requesting resources all using Packets. Such a Hub has also some attributes,
often filled in at runtime, that provide the service specific semantics. E.g. a counter can keep track of the
number of Put or Get requests, the Hub can have an owner Task when used to provide atomic access and
a Ceiling Priority can be associated with the Hub to provide support for Priority inheritance algorithms in
the Task scheduler. It is also possible that some Hubs use buffers where requests or data are kept awaiting
the synchronization to happen. Finally, after the synchronization often a callback function (the action
predicate) will be called. This function can e.g. copy the data associated with the specific service after
synchronization has happened. The Synchronising Predicate and the Action Predicate also enable to define
new application specific services without the need to reimplement the basic Hub functionality. E.g. the user
could for example define a Hub called an “AlarmWatcher”. Driver Tasks could the Put sensor reading on a
regular basis to this AlarmWatcher. The AlarmWacher then compares the sensor values with a pre-defined
threshold value and when the threshold is surpassed, it activates an “Alarm Raising function” e.g. to disable
the actuator driver Task.

According to the above mentioned relationships between Tasks, Hubs and data Packets. Note that while
two waiting lists are indicated, for some classes of services (e.g. Events, semaphores, resources) only one
of them will be used. The State attribute is dependent on the Hub Type and will contain information such as
Owner Task, Ceiling Priority, Event flag, Semaphore count, and the Fifo buffer count. The Synchronization
Predicate is a logical function that checks that synchronization can happen. The Synchronization Action

VirtuosoNext-Designer-1.0.0.0

22 CHAPTER 2. FUNCTIONAL DESIGN OF THE L1 LAYER

is a function to update the State when synchronization happens and to initiate the required action. The
Synchronization Predicate and Synchronization Action are both dependent on the Hub Type, i.e. L1 service
class.

2.1.4 On scheduling for real-time

One of the attributes of a Task is its Priority, defined to meet the application’s timing requirements. The
Priority will be defined by e.g. using a Rate Monotonic Analysis algorithm. In the “normal case” behaviour,
this Priority attribute is used to sort in order of Priority all waiting lists, inclusive the lists of Tasks that are
ready to run. Often this is the result of a service request that was fulfilled. However, it is not unlikely that
while a Task is put in the ready list, another Task of a higher Priority is also requesting the same service
(or resource). If this resource is unique (e.g. an Event was raised on which both Tasks are waiting) then
the resource should be granted to the highest Priority one at the moment this Task became active (and not
to the Task that was first inserted in the ready list). Hence, VirtuosoNext waiting lists are sorted in order of
Priority.

Once the requesting Task become ready again, it is inserted on the ready list waiting to become active. If
in the mean time a higher Priority Task also requests the same resource, it will be blocked by the lower
Priority Task to which the resource was already granted. In VirtuosoNext the solution for this problem
is achieved by decoupling the granting of the resource and the resource becoming available.. While the
waiting Task is removed from the waiting list and inserted in the ready list, the resource is only ‘reserved’.
When this Task reaches the head of the ready list, a check is made to verify if it was still the Task with the
highest Priority that was waiting for the resource. If not, the resource is granted to the other Task. These
issues are applicable to all services, but in practice this is mostly an issue for resource related services. In
VirtuosoNext, support for this functionality is provided using an application specific service.

Another issue is that once a Task owns a resource, it prevents other Tasks of higher Priority from receiving
the resource. This is called “blocking” and the problem is called the ‘Priority Inversion” problem. Given
that a Task with an intermediate Priority can then start running, the lower Priority Tasks can block a highest
Priority Task for an indeterminate period of time. This problem is created by the need for atomic access in
the application, and while atomic access cannot be avoided, the blocking time can be minimized. This is
achieved by raising the Priority of the lower Priority Task to the Priority of the waiting Task, reducing the
blocking time. Often this Priority will be limited to a Ceiling Priority. The issue is also complicated by the
fact that a Task can issue nested requests, i.e. requesting a new resource while already locking a granted
resource. These issues are applicable to Resources, Memory Maps and Memory Pools but are in practice
only implemented for resources as they define unique critical sections.

NOTE: When locking a Resource, the Task may block other Tasks requesting this Resource later. Hence,
this time should be kept as short as possible. For this reason, it is assumed that while a Task locks a
Resource it will not request any other service that can result in a waiting condition as this could result in
long series of dependencies with no control over the real-time behavior. For the same reason a Task should
not be stopped when owning resources. The Kernel cannot prevent such situations, so it is left to good
programming practice.

2.1.5 On Timers

VirtuosoNext also maintains a Timer List. This is a List sorted on a Timer value holding events that need
to happen in the future. When the event happens (its Timer value becomes a past event versus the actual
Time), the Event is enabled and a typical action will be to insert a Packet into the Kernel Task Input Port.
A typical event is a TimeOut related to a service request. Timer Events can be inserted into the Timer List
as well as removed from the Timer List. Timers can also be used to implement Timer based scheduling.

VirtuosoNext-Designer-1.0.0.0

2.2. INTER-NODE INTERACTIONS 23

2.1.6 On runtime errors

VirtuosoNext adopts a generic mechanism for handling runtime errors. No distinction is made between
kernel errors and application errors. It is also possible that the error signal is to be seen as a warning,
e.g. when a semaphore count reaches a threshold value to prevent forthcoming issues. When an error is
raised, the kernel will insert an error package with all relevant into the input port of an error handling Task.
This Task should run at the highest Priority one of all application Tasks on a given node. The application
developer must define the actions to be taken when such an error is raised.

The occurence of a processor exception (memory violation, numerical error) causes the currently active
Task to be aborted, and then restarted. It is possible to install an Abort Handler which gets invoked when a
Task gets aborted, which then has the possiblity to perform cleanup / recovery operations.

2.1.7 Logical view of the Packet Pool

Every Task has a pre-allocated Packet that can be used for single phase interactions between Tasks. In
order to allow two-phase interactions the Task has to allocate extra Packets from a Packet Pool that is
located on its local Node (see 2.3.1 on page 25). In reality, this Packet Pool is also a Hub with a specific
field that allows the kernel service to allocate or deallocate a packet from the Packet Pool. In this case, all
Packets will be L1 Packets. Note that the same mechanism also supports different types of Packet Pools.
E.g. the Packets can have a user defined size and are arranged in an array or they have a variable size. In
these cases the ActionPredicate will be different and service specific names are just, e.g. MemoryArray or
MemoryPool.

After a Task has get and processed a Packet, the Task has to deallocate this Packet to return it to the Packet
Pool that is located on its local Node.

* The Packet pool of a Node is an operating resource that maintains a list of free Packets.

« If a Task requests a Packet from the Packet Pool, and the Packet Pool has no free Packets available
then the requesting task becomes waiting until another task has de-allocated a Packet so that this
Packet can be allocated to satisfy the request.

The requests to allocate Packets are “buffered” by means of a Priority-sorted list. This is actually a list of
pre-allocated packets used by VirtuosoNext to implement the service requests. The Priority of an element
in the list is inherited from the requesting Task.

2.2 Inter-node interactions

2.2.1 Logical view of Link Drivers and inter-node interactions

VirtuosoNext implements Inter-node Links (see Section 1.4) using the relationship between a interacting
Task and a Link Driver Task, explained in Section 3.2.

e The LinkTX of an inter-node Link is implemented through a dedicated Link Driver Task that trans-
mits Packets to the directly connected remote Node via the appropriate hardware.

* The LinkRX of an inter-node Link is implemented through a dedicated SW entity in ISR LAYER
that injects the Packets in the Kernel Port. The Kernel will deliver the Packets to the appropriate
local Ports and Task Input Ports, or route the Packets to the LinkTX of the appropriate Inter-node
Links (i.e. to a Driver Input Port) as applicable.

A Link Driver Task will implement the following behaviour:

VirtuosoNext-Designer-1.0.0.0

24 CHAPTER 2. FUNCTIONAL DESIGN OF THE L1 LAYER

Interacting Task Interacting Task
[|
Task Input Port Task Input Port
Hubs Hubs
Kernel Task Ke";?(')r't”p”t Ke”f('):tnp”t Kernel Task
Driver Input Port Driver Input Port
Link Driver Task Link Driver Task
HW ISR Layer HW ISR Layer
Hardware

Figure 2.2: Communication between Inter-node Links and Tasks

* The Link Driver Task is waiting for a Packet on the Driver Input Port.

* The Link Driver Task will process the Packet on the Driver Input Port. (e.g. transmitting the packet
over a LinkTX)

The interaction scheme of the involved entities is shown in Figure 2.2.

Note: The Tasks, Link Driver Task and ISR layer interact with each other ONLY via the Kernel, as de-
scribed below.

To provide the interacting Tasks with a simple and sufficient way for addressing the INTER-NODE LINKs,
VirtuosoNext has adopted the following mechanism:

An inter-node Link is addressed by the Input Port of the Driver Task that is driving the link.

When a Task calls a service that uses a remote Hub as synchronising entity, the following sequence of
actions is performed. Note that we illustrate this mechanism using the exchange of a Packet, but the same
mechanism is used for all L1 services:

e IL1_PutPacket_W (Put_Request_Packet, Remote Hub) or vice versa

e IL1_GetPacket_W (Get_Request_Packet, Remote_Hub)

These functions will in the context of the Task update the Header of the Packet to be sent to a Hub and
insert it in the Kernel Input Port. The Kernel will call the Router function to forward the request Packet
to the Remote Hub using a local TX Driver Input Port. The Driver Task then forwards the Packet to the
destination Node by the lower level LinkTX driver protocols.

When the Return Packet arrives, the Kernel will make the Task ready again and the task can retrieve the
return value from its preallocated Packet.

VirtuosoNext-Designer-1.0.0.0

2.3. MULTI-TASKING 25

When two inter-node Links of the same Node are used to pass a Packet from one remote Hub to another
(so-called through-routing), then only one operation is performed by the Link Driver Task that has Getd
the Packet from the HW. After having passed on the Packet to the Kernel, the Kernel will insert the Packet
in the Driver Input Port of the output LinkTX driver Task

2.2.2 Logical view of the Router

The Router provides a way to map a target Node with a Driver Input Port that has to be used to route the
Packets. The Router is used in three cases:

* Puting a Packet to a remote Hub
* Receiving a Packet from a remote Hub

» Forwarding a Packet from a neighbouring node to another neighbouring node

Note that there are no global routes calculated. Routing is based on a local routing table that tells the
communication layer which communication port (TX-Link) to use to transmit a packet. The next step in
the routing of the packet is done on the next receiving node.

2.3 Multi-tasking

As defined in Section 1.1, multiple Tasks may run on a single Node but only one Task can execute at a
given time on a given Node.

2.3.1 Definition of multi-tasking
Multi-tasking as provided by VirtuosoNext, is defined as follows:

* Multi-tasking is Priority based, such that a higher Priority Task that is ready to run gets the CPU in
favour of a lower Priority one (that is also ready to run)

* The multi-tasking is pre-emptive, such that when a higher Priority Task becomes ready to run, it will
pre-empt immediately a running Task of lower Priority (hence the scheduler will switch contexts)

¢ The multi-tasking performs Round Robin scheduling among equal Priority Tasks that are ready to
run. Time-slicing, when enabled can only happen between Tasks of equal Priority.

2.3.2 Logical view of the Context Switch

Logically, multi-tasking is supported by an atomic operation that switches the CPU context from one Task
(to deactivate the running Task) to another one (to continue with another ready Task). This operation is
called the Context switch.

“The Context Switch is an atomic (non-interruptible) operation that saves the CPU context of the running
Task that is being deactivated, and restores the CPU context of another ready Task, that is being activated
to run.”

In most practical implementations, the context Switch restores the essential CPU registers in such a way,
that the resumed Task continues running right after the Context Switch from the point where its context
was saved. The re-activated Task runs like if it was not ever deactivated. Note however that such states are
orthogonal to the waiting and suspended states.

VirtuosoNext-Designer-1.0.0.0

26 CHAPTER 2. FUNCTIONAL DESIGN OF THE L1 LAYER

2.3.3 Logical view of the Kernel
The only way the Tasks can invoke the services of VirtuosoNext Layer LO is to request the services from
the Kernel, which runs as a separate Task.

“The Kernel of VirtuosoNext is a dedicated Task that serves the service requests from the running Tasks
and other software layers (e.g. from a HW ISR and Driver Tasks).”

All requests are passed to the Kernel using Packets, delivered to a dedicated input Port called the Kernel
Port.

“The Kernel Port is the only Port where the Packets are delivered directly in the context of a Task that
inserts the Packet. Only the Kernel Task delivers the Packets to all other Ports.”

VirtuosoNext defines the following:

* When a Packet is delivered to the Kernel Port, the requesting Task is set in the WAITING state.

* The Kernel sets the Requesting Task in the READY state only after the service request has been
served (completed).

e The Kernel IS NOT ALLOWED TO access the Packet after having set the requesting Task back in
the READY state.

Each service of the Kernel is provided as a dedicated function call, exported to other SW layers as a part of
the Kernel API.

The template algorithm describing how a Task requests a service from the Kernel is as follows:

1. Having passed a request to the Kernel, a Task goes into the waiting state, resulting in switching the
context to the Task with the highest Priority among the Tasks that are READY to run.

2. The Kernel Task has a Priority higher than any other Task (incl. Link Driver Tasks).

3. The Kernel Task will process all requests on its Input Port until the waiting list is empty before
calling the scheduler to execute the next highest Priority Task on the ready list.

Tasks from the Application Layer are not the only ones that may request a service from the Kernel. In
particular, a HW ISR can request a service. As the HW ISR environment (further ISR LAYER) cannot be
set in a waiting state, VirtuosoNext defines the following restriction:

* The ISR LAYER is only allowed to Put a Packet to the local Kernel Task Input Port.

* The Packets, being sent, are delivered to the Port in the context of the ISR LAYER (i.e. without
switching to the Kernel Task).

» These Packets will contain a Service ID that will be used by the Kernel Task to invoke a specific
function as needed by the application.

« It is possible to have another Task Get the return code from the ISR issued service (e.g. typically
used by a Driver or monitoring Task).

Running as a Task, the Kernel performs the following sequence of operations in a loop. When the Kernel
has processed all requests retrieved from its input Port, it comes in the state of waiting for other requests,
and as such passes the CPU back to other Tasks.

VirtuosoNext-Designer-1.0.0.0

2.3. MULTI-TASKING

Requesting Application Task Kernel Task

.\ L1_ServiceRequest
~

(arguments)
Gse (pre)allocated PackeD

Update Packet fields
from the arguments

Insert Packet
to L1 Kernel Input Port

<~/ Context Switch
-\ (to L1 Kernel Task)

Retrieve Packet from
L1 Kernel Input Port
Serve the Request
Gend Return Packet to Task Input POD

[/ Context Switch
\(to Requesting Task)

0

T

Figure 2.3: Template scenario of the serving of a request to the Kernel

VirtuosoNext-Designer-1.0.0.0

28

CHAPTER 2. FUNCTIONAL DESIGN OF THE L1 LAYER

®-_

L1 Kernel Task EntryPoint

Wait for a Packet

A Packet delivered to the
L1 Kernel Input Port

Process Packet

C

Update Tasks state
d call Scheduler as needed

®

Figure 2.4: The Kernel Loop

VirtuosoNext-Designer-1.0.0.0

2.3. MULTI-TASKING 29

2.3.4 Logical view of the Scheduler
For providing multi-tasking VirtuosoNext has a Scheduler, that is defined in the following way:
* The Scheduler is a functional entity that decides which Task has to execute next, among all Tasks
ready to run.

* To know what Tasks are READY to run, the Scheduler manages a dedicated (and only one) list of
Tasks, called the READY list.

* The Scheduler is invoked to decide what Task to run next only in case of the following state changes
in the OS environment:

— a Task becomes ready to run and has been put into the READY list and it has the highest Priority
of all Tasks competing for the resource it reserved to use

— If a Task is no longer READY to run, it will be removed from the READY list.
The READY list is a Priority-ordered list of Tasks.

* The Scheduler is the only software module that does the Context Switch between Tasks

e The Scheduler DOES NOT decide which Task becomes READY to run and which Task becomes
WAITING, it just schedules the Task that has the highest Priority on the READY List. The decisions
are always made by the logic of interaction (see Section 2.1.3) or by the logic of the service requested
of the Kernel Task by a Task. (see Section 2.3.3).

VirtuosoNext-Designer-1.0.0.0

Part Il

Installation Instructions

Chapter 3

Installation Instructions

Introduction

This manual will guide you through the installation process of VisualDesigner-VirtuosoNext 1.1 which
includes an VirtuosoNext Win64 port plus the corresponding examples. After guiding you through the
installation process, the manual explains how to build the provided examples.

3.0.1 Folder Structure on Download Server

The download server contains two top level folders:

e 1.1.x.3\,where ‘x’ is a number: This folder contains the binary and source code versions of the
developed software, including these instructions. The * signs symbolise a wildcard. In this folder
there are on the top level the following elements:

— VirtuosoNext_Installation_Instructions.pdf: Document describing how to
install VirtuosoNext. This is the document that you’re currently reading.

— VirtuosoNext_OTL_Installation_Instructions.pdf: Document describing how
to install and build the VirtuosoNext-OTL

— VirtuosoNext_Support_Request.doc: Use this form to issue a support request.
— README. TXT: This information

— Binary_Distribution\: Contains the binary redistributable of VirtuosoNext-1.1, its tools,
and the Xilinx ZYNQ-BSP.

— OTL \: Contains the source code obtained under the Open Technology License.

* ExternalTools)\, which contains all the external tools needed to build and use the developed
software. Whenever this document refers to the ExternalTools)\ folder, then this folder is meant.

3.1 VisualDesigner-VirtuosoNext Installation Instructions for MS-Windows

This section details how to setup the VisualDesigner-VirtuosoNext-1.0.0.0, which requires the MinGW
toolchain, and the CMake build system. These instructions assume that you have downloaded the complete
VisualDesigner-VirtuosoNext distribution.

Please ensure that already existing toolchains on the installation system do not conflict with the toolchains
that we provide. This usually shows by the build process failing or the generated binary not working.

34 CHAPTER 3. INSTALLATION INSTRUCTIONS

3.1.1 Install 7zip

Install the 7zip program on your Windows PC by executing the file:
ExternalTools\7zipl900-x64.exe

Follow the instructions given by the installer. This tool is required in order to install the MinGW Tool-chain
in the next step.

3.1.2 MinGW Tool-chain for Windows

MinGW [1] is a GNU GCC version to compile programs for MS-Windows. It is available both under
MS-Windows and Linux, which is one of the reasons why we use it. To install it please follow these steps:

1. Start 7zip;

2. Open the archive ExternalTools\1686-8.1.0-release-win32-sjlj-rt-v6-rev0.7z
3. Click on the button ‘Extract’

4. In the dialoge that opens enter c : \ as location for ‘Copy to’.

5. Press on OK.

6. The toolchain has now been copied to: ¢: \mingw32

3.1.3 Adding MinGW to the System Binary Search Path

It is necessary to add the newly installed MinGW environment to the Windows System Path. To do this
please follow the following steps:

1. Open the Start Search, type in “env”, and choose “Edit the system environment variables”:
2. Click the “Environment Variables...” button.

3. Under the “System Variables” section (the lower half), find the row with “Path” in the first column,
and click edit.

4. The “Edit environment variable” UI will appear.
5. Click the “New” button.
6. Enter “; c: \mingw32\bin” in the newly created line.

7. Click the “OK” button.

Now the MinGW environment is part of your path. Warning, should you already have installed a mingw
environment on your machine then please remove it from the path, as it could cause compatibility problems.

3.1.4 CMake Build System

VisualDesigner-VirtuosoNext uses the CMake build system [2] (version 3.0 or better) to build itself and
applications using it. The following steps guide you through the installation process:

VirtuosoNext-Designer-1.0.0.0

3.1. VISUALDESIGNER-VIRTUOSONEXT INSTALLATION INSTRUCTIONS FOR
MS-WINDOWS 35

+ CMake 3.0.1 Setup

4 Install Options
] 4 4 Choose options for instaling CMake 3.0.1

By default CMake does not add its directory to the system PATH.

b addhCMake bohs Svste AT e
=(2Add CMale b he system BATH For all neers. 2
......................

‘U aad' CMah i tT've system PATH*DI’ current user

[]Create CMake Deskkap Icon

(et [wes] [)

Figure 3.1: Adding CMake to the System Binary Search Path

1. Start the installation process by executing:
ExternalTools\cmake-3.0.1-win32-x86.exe.

2. In the screen “Install Options” select “Add CMake to the system PATH for all users” (see Figure
3.1). This adds the CMake binary directory to the System Binary Search Path, which is necessary in
order for the VirtuosoNext build system to be able to use CMake.

3.1.5 Installing VisualDesigner

The VisualDesigner installation image is available in the download folder. To install it, execute:
“BinaryDistribution\VisualDesigner-VirtuosoNext-1.1l.x.3.msi”

where ‘x’ is a number representing the patch-level of the MSI. After this step the VisualDesigner including
the VirtuosoNext Kernel Images for Win64 is installed.

VirtuosoNext-Designer-1.0.0.0

36 CHAPTER 3. INSTALLATION INSTRUCTIONS
A Demo_W.ove - Visual Designer-1.6.6.2 S e S
File Edit View Build Tools Help
AN S H@ % EE e Ea N N Qwiniz @arm-cortex-adjzc7oz @ Q
Topology | Application x
3 @ +| Win32Node1 win32 node
) Property Value
Files name ‘Win32Nodel
Libraries compiler C/MinGW/bin/gcc.exe
VN-Libraries . build_system cmake
Include Paths .. ada_support false
Library Paths rxPacketPoolSize 21
CFLAGS m kernelPacketPoolSize 2
[T] BalisTask traceBufferSize 1024
® GraphHostServer debuglnp't . 0
compilerOptions Os
RC_COMPILER C/MinGW/bin/windres.exe
Files Nodes | Entities Bodies Mem-Groups 7 » || Properties
Output w L]
mingw3Z-make[3]: Le rectory 'D:/workspaces/VirtuosoNext/OpenConRTOS-Designer-Exanples_1.6/win32/GraphicalHostService/Demo_W/Output/
Install the project...
-- Install configuration: ""
- Installing: D:/workspaces/VirtuosoNext/OpenComRIOS-Designer-Examples 1.6/win32/GraphicalHostService/Demo_W/Cutput/Win32Nodel/../bin/Win
mingw3Z-make[2]: Leaving directory 'D:/workspaces/VirtuosoNext/OpenComRIOS-Designer-Exanples_1.6/win32/GraphicalHostService/Demo_W/Output/
mingw32-make[1]: Leaving directory 'D:/workspaces/VirtuosoNext/OpenComRTOS-Designer-Exanples_1.6/win32/GraphicalHostService/Demo_W/Output/
mingw32-make: Leaving directory 'D:/workspaces/VirtuoscNext/OpenComRTOS-Designer-Examples_l.6/win32/GraphicalHostService/Demo W/Output’
Build succeeded I
(=] Output | Error List

Figure 3.2: Topology of the Demo_W example

3.2 How to run an Example

This section first explains how to build one of the provided examples, before discussing each example in de-
tail. All examples are located in the folder ‘Examples\win64’ below the VisualDesigner-VirtuosoNext
installation directory.

Please note that VirtuosoNext on MS-Windows is not timing accurate, it is a behaviour emulation of Virtu-
osoNext.

1. Start VisualDesigner:
In the Start Menu of MS-Windows select open the group ‘VisualDesigner-VirtuosoNext-1.0.0.0" (x
representing the patch-level of VisualDesigner). Inside this group click on the entry labeled ‘Visu-
alDesigner’ to start VisualDesigner.

Open the ‘Demo_W’ project in VisualDesigner:

In the menu-bar click on ‘File’ and then on ‘Open Project’ to open the ‘Open Project’ dialogue of
VisualDesigner. Now navigate to the folder ‘examples\win64\GraphicalHostService\-
Demo_W\Demo_W.ove’’ below the VisualDesigner installation directory (usually c: \VisualDesigner—
—-VirtuosoNext—-1.0.0.0). There, select the file ‘Demo_W.ove’ and click on the button la-

beled ‘open’ to open the project. You should now see a topology consisting of a Win64 Node,

similar to the one shown in Figure 3.2. The topology diagram is a graphical representation of the
project-topology.

3. Check the compiler settings for the Win32Node: Open the ‘Properties’ pane on the right hand side
by clicking on ‘Properties’ and then pinning it down, using the little pin in the upper right corner of
the Window. Left click on the Win64 node to display its properties. Now check whether or not the
property ‘Compiler’ refers to the compiler to use for Win64 Nodes on your system (The MinGW
compiler which you installed in Lecture 1)'.

Take a look at the Application Diagram for the example (Figure 3.3). In the Application diagram the
developer specifies Tasks and Hubs and their interactions. All necessary code to reflect the changes
in the Application diagram gets automatically generated. The diagram updates itself whenever there
are changes to the source code, this ensures that both source code and diagram are consistent at all
times.

'If you followed the instructions given in Lecture 1, the compiler should be set to either “c:\mingw32\—
bin\gcc.exe”or“gcc.exe”.

VirtuosoNext-Designer-1.0.0.0

3.3. TROUBLESHOOTING 37

r@Demu;W.uveﬁm\Desiﬁner—EGl P ; : —— .— Pp— - ol o (5
File Edit View Build Tools Help

@DgA@ san 9 @ a FEARTNeEEA0RFMELAFRFES=EE (Q—

Topology ./ Application | X
Ghs_setPen_w // 4

Ghs_setBrush_w // 4

Ghs_openSession_W // 4
Ghs_getCanvasSize_W
Ghs_drawText_W // 6

Ghs_drawRect_W

Ghs_drawCircle_ W [/ 8

Ghs_closeSession W [/ 4

o

»
sepiedod

Win32Node1:
BallsTask

Win32Node1:
GraphHostServer

sdne.B-Walk | seIped | seiaug | sspoN | sa)id

< »
= output | Error List

Figure 3.3: Application Diagram of the Demo_W example

(e o

This example demonstrates the mechanism of OpenComRTOS tasks synchronization (wait)
Yellow ball is a packet containing data (ball of corresponding to task color).

At synchronization the data transfer occurs.

Taskl Task?2

» . : o

Synchronization entity (e.g. Port)

Figure 3.4: Screenshot of the running Demo_W example

5. Build the project:
Compile the example application using the menu-item ‘Build’ form the ‘Build’” menu. The build
run should end with: “Build successful”.

6. Execute the generated binary:
c:\VisualDesigner-VirtuosoNext—-1.0.0.0\examples\win64\GraphicalHostService\-
Demo_W\Output\bin\win32_node.exe

3.3 Troubleshooting

This section is a collection of installation issues and their solution.

VirtuosoNext-Designer-1.0.0.0

38 CHAPTER 3. INSTALLATION INSTRUCTIONS

Code generators tools v. 1.6.10.3

ProjectGen: Starting to analyze the system.

Nodegroup found

INFCO: Adding Node: zyng ngs_core 0

ProjectGen: Generating configuration for NodeGroup zyng
ProjectGen: Generating configuration for Node Win3ZNode
ProjectGen: Generating configuration for Node zyng ngs_core 0
Failed to start: C:\mingw2\bin\mingw32-make.exe -C Cutput

Figure 3.5: Example of Visual-Designer not finding mingw32-make.

Options

User Interface
Editor C:/mingw2/bin/mingw32-make.exe III

Compile/Build S... Default Project Directory

VirtuosoNext/VisualDesigner-1.6/projects

Cancel

Figure 3.6: Visual-Designer Options Dialogue, ‘Compile/Build ...’

3.3.1 mingw32-make not found

In case that Visual-Designer cannot execute the mingw32-make command it will show an error message
in the Output pane similar to the one shown in fig. 3.5. To fix this issue open the Options Dialogue of Visual-
Designer (Main Menu — Tools — Options...). In the Options Dialogue then select ‘Compile/Build ...’
(see fig. 3.6), and set the path to the make execuable.

3.4 Summary

This chapter gave the installation instructions for Visual-Designer and its dependencies, for MS-Windows
10. Showed how to build and run an example for Windows 64, and finally gave some troubleshooting
hints.

VirtuosoNext-Designer-1.0.0.0

Part i

VirtuosoNext

Chapter 4

Module Index

4.1 Modules

Here is a list of all modules:

Task Management Operations ot v vt e 45
ASynchronous Services i e e e e 54
Base TYpes o o o e e e e e e e 57
L1_BYTE e e e e e e e 58
L1_UINTS8 e e e e e e e e e 58
L1_INT8 . . . e e e e e e 59
L1_UINTILO6 e e 59
L1_INTI6 e e e 60
L1_UINT32 e e e e e e e e e 60
L1_INT32 . . . e e e e e 61
L1_UINTO64 e e e e e e e e e e 61
L1_INTO64 e e e e e e e e 62
L1.Time o s 62
L1_KernelTicks s 63
L1_BOOL e e e e e 63
LI_Priority e e e 64
L1_TaskArguments i v it e e e e e e e e 64
L1_ErrorCode e e 65
L1 ReturnCode s 65
Typesrelated to Timing L 64
VirtuosoNext Hub 67
Black Board Hub e 71
DataEventHub e 81
Data-Queue Hub 85
EventHub e e e e e 90
FIFOHub e e e 99
Memory PoolHub 112
Packet PoolHub e 119
PortHub e e 125
Resource Hub e e 139
Semaphore Hub e e 145
Memory Block Queue Hub L 153

Developer Information e e e 67

42

CHAPTER 4. MODULE INDEX

Hardware Abstraction Layer e 163

Internal Kernel API

VirtuosoNext-Designer-1.0.0.0

Chapter 5

Data Structure Index

5.1 Data Structures

Here are the data structures with brief descriptions:

_struct_L1_DataQueueElement_ 181
_struct_L1_DataQueueState_ e e e 181
_struct_L1_EventState_ e e 182
_struct_L1_FifoState_ e e e e 183
_struct_L1_Hub_ . . . o e 184
_struct_L1_MemoryBlock_ 185
_struct_L1_MemoryBlockHeader_ 186
_struct_L1_Packet_ e e 187
_struct_L1_PacketPoolState_ e 189
_struct_L1_Port_ . . . e 190
_struct_LL1_ResourceState_ e e 191
_struct_L1_SemaphoreState_ 192
_struct_tracebuffer_ . . . L L L L e 193
L1_BlackBoard_Board e 193
L1_BlackBoard_HubState e 194
L1_DataEvent_HubState e 195
L1_HubNameToID e 195
L1_MemoryBlockQueue_HubState 196
L1_MemoryPool_HubState e 197
L1_NodeStatusStructure e e e e e e e 199
L1_PacketData e 200
L1 _TaskControlRecord e 201
L1_TaskNameToID e 203

L1I_WLM_State e s 204

Chapter 6

Module Documentation

6.1 Task Management Operations

Macros

« #define LI_UNUSED_PARAMETER(x) (void)(x)

Functions

e L1_KernelTicks L1_getCurrentKernel TickCount (void)
* static L1_TaskID L1_getCurrentTaskld (void)

This function returns the ID of the currently running Task.
e static L1_Priority L1_getCurrentTaskPriority (void)
e static L1_UINT32 L1_getCurrentTaskStackSize (void)
e static const char * L1_hubldToHubName (L1_PortID hubld)

This function retrieves the name of the Hub identified by the parameer hubld.
e L1_Time L1_KernelTicks2msec (L1_KernelTicks ticks)
e L1_KernelTicks L1_Msec2KernelTicks (L1_Time timeInMs)
e static __inline__ L1_ReturnCode L1_ResumeTask_W (L1_PortID task)
e static __inline_ L1_ReturnCode L1_StartTask_W (L1_PortID task)
e static __inline__ L.1_ReturnCode L.1_StopTask_W (L1_PortID task)
« static __inline__ L.1_ReturnCode L1_SuspendTask_W (L1_PortID task)
e static const char x L1_taskldToTaskName (L1_TaskID taskId)
This function retrieves the name of the Task identified by the parameer taskld.
e static __inline__ L.1_ReturnCode L1_WaitTask_WT (L1_Timeout timeout)
e static __inline__ L1_ReturnCode L1_WaitUntil_WT (L1_KernelTicks timePoint)
e static __inline_ L1_ReturnCode L1_Yield_W (void)

Variables

e const L1_HubNameTolD x L1_HubNamesTolDs []

This array contains for each node-id how many Tasks are present on this node. This variable is defined at
build time in the file Output /src/L1_nodes_id _mapping.c

e const L1_UINT32 L1_NBR_OF_NODES

46 CHAPTER 6. MODULE DOCUMENTATION

Global variable containing the number of VirtuosoNext Nodes in the complete system. This variable is
defined at build time in the file Output/src/L1_nodes_1id _mapping.c

e const L1_UINT32 L1_NodeldToNbrOfHubs []

This array contains for each node-id how many Hubs are present on this node. This variable is defined at
build time in the file Output/src/L1_nodes_id _mapping.c

e const L1_UINT32 L1_NodeldToNbrOfTasks []

This array maps node-ids to arrays mapping local-ids to the name of the Hubs on each node. This variable
is defined at build time in the file Output /src/L1_nodes_id _mapping.c

e const L1_TaskNameToID * LL1_TaskNamesToIDs []

This array maps node-ids to arrays mapping local-ids to the name of the Tasks on each node. This variable
is defined at build time in the file Output/src/L1_nodes_id_mapping.c

6.1.1 Detailed Description

VirtuosoNext offers the following operations to manage Tasks.

6.1.2 Visual Designer

gt

Figure 6.1: Application Diagram Icon

6.1.2.1 Properties

The Entity has the following Properties:

¢ node: The name of the Node to which the Entity is mapped.
* name: Name of the Entity instance.

* priority: The priority of the Task. A lower value means a higher priority. The user can select values
in the range 3-254.

* stacksize: The size of the stack, in Bytes, for this Task.
e status: Status of the Task, started (L1_STARTED) or inactive (L1_INACTIVE).

* entrypoint: The name of the function that represents the Task-Entry-Point, it must be of type L1_-
TaskFunction.

e arguments: A 32 Bit unsigned integer value that gets passed to the Task-Entry-Point when it gets
started.

6.1.3 Macro Definition Documentation
6.1.3.1 #define L1_UNUSED_PARAMETER(x) (void)(x)

This is a macro that is used to indicate that a parameter is not being used in this function.

VirtuosoNext-Designer-1.0.0.0

6.1. TASK MANAGEMENT OPERATIONS 47

Parameters
\ x | The unused parameter. \

6.1.4 Function Documentation
6.1.41 L1_KernelTicks L1_getCurrentKernelTickCount (void)
Returns the number of expired Kernel-Ticks.

Returns

The number of expired Kernel-Ticks since start of the Kernel-Task.

See Also

L1_WaitUntil WT
L1_KernelTicks2msec
L1_KernelTicks2msec

6.1.4.2 static L1_TaskID L1_getCurrentTaskld (void) [inline], [static]
This function returns the ID of the currently running Task.

Returns

L1_TaskID The ID of the Task calling this function.

Warning

Do not use this function in ISR-Context, it will give incorrect results.

6.1.4.3 static L1 _Priority L1_getCurrentTaskPriority (void) [inline], [static]

Returns

L1_Priority

Warning

Do not use this function in ISR-Context, it will give incorrect results.

6.1.4.4 static L1_UINT32 L1_getCurrentTaskStackSize (void) [inline], [static]
Returns

L1_UINT32

Warning

Do not use this function in ISR-Context, it will give incorrect results.

VirtuosoNext-Designer-1.0.0.0

48 CHAPTER 6. MODULE DOCUMENTATION

6.1.4.5 static const charx L1_hubldToHubName (L1_PortlD hubld) [inline], [static]
This function retrieves the name of the Hub identified by the parameer hubld.

Parameters

\ taskld | This is the ID of the Hub for which to determine the name.

Returns

INULL Pointer to the C-String (NULL terminated) with the name of the Hub.
NULL A non existing hubld was given.

Warning

If an invalid ID (read an ID of a non-existing Hub) is given, then the function returns NULL.

6.1.4.6 L1_Time L1 _KernelTicks2msec (L1_KernelTicks ticks)

Converts Kernel-Ticks to milliseconds

Parameters

\ ticks | The Kernel-Ticks value to convert.

Returns

The corresponding milliseconds

See Also

L1_WaitUntil WT
L1_getCurrentKernel TickCount
L1_Msec2KernelTicks

6.1.4.7 L1_KernelTicks L1_Msec2KernelTicks (L1_Time timelnMs)

Converts milliseconds to Kernel-Ticks.

Parameters

‘ timeInMs | The milliseconds value to convert.

Returns

The corresponding Kernel-Ticks.

See Also

L1_WaitUntil. WT
L1_getCurrentKernel TickCount
L1_KernelTicks2msec

VirtuosoNext-Designer-1.0.0.0

6.1. TASK MANAGEMENT OPERATIONS 49

6.1.4.8 static __inline__ L1_ReturnCode L1_ResumeTask_ W (L1_PortID task) [static]

This service resumes the task at the point it was when suspended.

Parameters

\ task | ID of the Task to be resumed.

Returns

L1 _ReturnCode:
¢ RC_OK, the Task has been resumed successfully.
¢ RC_FAIL, the service failed.

Precondition

¢ Task was in suspend state

Postcondition

» Task resumed at the point it was when suspended.

Remarks

SPC Task states
SPC Resuming a Task

6.1.4.9 static __inline__ L1_ReturnCode L1_StartTask W (L1_PortID task) [static]

This service will start the task with TaskID and adds it to the READY list of the node on which the Task
resides.

Parameters

‘ task | the ID of the Task to be started.

Returns

L1_ReturnCode:
* RC_OK, if the Task has started successfully.
¢ RC_FAIL, if the service failed.

Precondition

* Task is inactive
 Task is initialised and ready to start
» All elements of TaskControlRecord are filled in, including entry-point and stack pointer.

¢ The Task cannot start itself

VirtuosoNext-Designer-1.0.0.0

50 CHAPTER 6. MODULE DOCUMENTATION

Postcondition
¢ Task is on the READY list (case RC_OK)
¢ RC_Fail will be raised in following cases:

— Task starts itself
— Task is not yet initialised (i.e. not all TCR fields are filled in)

Remarks

SPC Task states

6.1.4.10 static __inline__ L1_ReturnCode L1 _StopTask W (L1_PortlD fask) [static]

This service will stop the task with TaskID, removes it from the READY list, removes any pending Packets
on all waiting lists and restores the entry point.

Parameters

‘ task ‘ the ID of the Task to be stopped.

Returns
L1 _ReturnCode:
¢ RC_OK the Task has started successfully.
¢ RC_FAIL the service failed.

Precondition
e Task is not stopped
» The Task is not the requesting task itself

* The Task should not lock any resource. (Task should release all resources first using a secondary
entrypoint function

Postcondition
* Task is no longer on any waiting list
* Entry Point restored
* Any data may be lost
e Task is in stopped state

Note

Requests for the task can continue to arrive from other tasks No clean up yet for pending asynchronous
packets The kernel task will discard any Packets with as destination a stopped Task.

VirtuosoNext-Designer-1.0.0.0

6.1. TASK MANAGEMENT OPERATIONS

51

Warning

This service must be used with caution. It assumes perfect knowledge about the system by the invoking
Task. Normally only to be used when the Task is found to be misbehaving (e.g. Stack overflow,
numerical exception, etc.) Care should also be taken when stopping a driver task as this impacts
the routing functionality. Additional kernel service (messages) are used for the clean-up of pending
Packets in waiting list on other nodes Except for the case of two-phase services, it is sufficient to
remove the (at most single waiting) Packet from the appropriate waiting list (either local or remote)
(Waiting List of Port, Packet Pool or Kernel Input Port, or Driver Task Input Port). Only for (returning

of) remote services, it is possible that a Packet is destined for a stopped Task.

Remarks

SPC Task states
SPC Stopping a Task
6.1.4.11 static __inline__ L1_ReturnCode L1_SuspendTask W (L1_PortlD task) [static]

This service suspends task and marks it as such in the Task Control Record.

Parameters

‘ task | the ID of the Task to be suspended.

Returns

L1_ReturnCode:
* RC_OK, the Task has been suspended successfully.
¢ RC_FAIL, the service failed.

Precondition

* The Task is not the requesting task itself

Postcondition

 Task is marked as suspended

* Requests for the task can continue to arrive from other tasks.

Note

The suspend service is the fastest way to prevent a Task from executing any further code. It should only
be used when the application has a good reason and needs to be followed by an analysis, eventually

resulting in a corrective action (e.g. by an operator or stopping and restarting a Task).

Pending Packets in any waiting list remain pending, and are continued to be processed e.g. synchronisation.
In particular, the Task may remain and inserted in the READY List. The task is however never made RU-
NNING. Hence, the suspend state of a Task is only changing the status of the task preventing it from being

scheduled until the task is resumed.

Remarks

SPC Task states
SPC Suspending a Task

VirtuosoNext-Designer-1.0.0.0

52 CHAPTER 6. MODULE DOCUMENTATION

6.1.4.12 static const char« L1_taskldToTaskName (L1_TaskID taskld) [inline], [static]

This function retrieves the name of the Task identified by the parameer taskId.

Parameters

\ taskld | This is the ID of the Task for which to determine the name.

Returns

INULL Pointer to the C-String (NULL terminated) with the name of the Task.
NULL A non existing taskld was given.

Warning

If an invalid ID (read an ID of a non-existing Task) is given, then the function returns NULL.

6.1.4.13 static __inline__ L1_ReturnCode L1_WaitTask WT (L1_Timeout timeout) [static]

This Kernel service is called by a Task to wait for a specified time interval.

Parameters

\ timeout | how many system ticks the task wants to wait.

Returns
L1_ReturnCode:
¢ RC_TO Service returned after Timeout.

¢ RC_FAIL service failed.

Precondition

¢ None

Postcondition

* Calling task ready.

Remarks

SPC Task states

VirtuosoNext-Designer-1.0.0.0

6.1. TASK MANAGEMENT OPERATIONS 53

6.1.4.14 static __inline__ L1_ReturnCode L1_WaitUntil WT (L1_KernelTicks timePoint) [static]

This Kernel service allows a Task to wait until a specific time-point. Until this time-point has been reached
the Task will be suspended.

Parameters
\ timePoint \ The point in time the Tasks would like to be rescheduled. This value is in Kernel-Ticks. \

Returns

RC_TO If the Task has been scheduled because the time-point has been reached.
RC_FAIL If there was a problem.

See Also

L1_getCurrentKernel TickCount
L1_Msec2KernelTicks

6.1.4.15 static __inline__ L1_ReturnCode L1_Yield W (void) [static]

This function allows a Task to prematurely pass execution to another Task with at least the same priority
than the currently active Task.

Returns

RC_OK
RC_FAIL

6.1.5 Variable Documentation
6.1.5.1 const L1_HubNameToIDx L1_HubNamesTolDs[]

This array contains for each node-id how many Tasks are present on this node. This variable is defined at
build time in the file Output/src/L1_nodes_id_mapping.c
See Also

L1_taskIldToTaskName
L1_hubldToHubName

6.1.5.2 const L1_UINT32 L1_.NBR_OF_NODES

Global variable containing the number of VirtuosoNext Nodes in the complete system. This variable is
defined at build time in the file Output/src/L1_nodes_id_mapping.c

See Also

L1_taskIldToTaskName
L1_hubldToHubName

VirtuosoNext-Designer-1.0.0.0

54 CHAPTER 6. MODULE DOCUMENTATION

6.1.5.3 const L1_UINT32 L1_NodeldToNbrOfHubs[]

This array contains for each node-id how many Hubs are present on this node. This variable is defined at
build time in the file Output/src/L1l_nodes_id_mapping.c

See Also

L1_taskldToTaskName
L1_hubldToHubName

6.1.5.4 const L1_UINT32 L1_NodeldToNbrOfTasks][]

This array maps node-ids to arrays mapping local-ids to the name of the Hubs on each node. This variable
is defined at build time in the file Output/src/L1l_nodes_id_mapping.c

See Also

L1 _taskldToTaskName
L1_hubldToHubName

6.1.5.5 const L1_TaskNameToIDx L1_TaskNamesTolDs[]

This array maps node-ids to arrays mapping local-ids to the name of the Tasks on each node. This variable
is defined at build time in the file Output/src/L1_nodes_id_mapping.c

See Also

L1 taskldToTaskName
L1 _hubldToHubName

6.2 Asynchronous Services

Functions

e L1_ReturnCode L1_initialiseAsyncPacket (L1_Packet xpacket, L1_PacketData xdataPart)
e L1_ReturnCode L1_WaitForPacket (L1_Packet xxPacket, L1_Timeout Timeout)

e static __inline__ L.1_ReturnCode L.1_WaitForPacket_ NW (L1_Packet *xpacket)

e static __inline__ L.1_ReturnCode L1_WaitForPacket_W (L1_Packet *xpacket)

* static __inline__ L1_ReturnCode L1_WaitForPacket WT (L1_Packet *xpacket, L1_Timeout time-
out)

6.2.1 Detailed Description
6.2.2 Function Documentation
6.2.2.1 L1_ReturnCode L1 initialiseAsyncPacket (L1_Packet « packet, L.1_PacketData « dataPart)

This function initalises an L1_Packet to be used for an Asynchronous interaction. The following fields get
initialised:

VirtuosoNext-Designer-1.0.0.0

6.2. ASYNCHRONOUS SERVICES 55

RequestingTaskID: Is set to the Task ID of the currently running Task.

ListElement.Next: NULL;

ListElement.Prev: NULL;

ListElement.Priority: Is set to the IntrinsicPriority of the currently running Task.

PendingRequestHandler: NULL,;

PendingRequestListElement.Prev = NULL;

PendingRequestListElement.Next = NULL;

PendingRequestListElement.Priority: Is set to the IntrinsicPriority of the currently running Task.

e OwnerPool: NULL, because this packet is not part of a Packet Pool.

dataPart to the value of the parameter dataPart.

Parameters

packet | Pointer to the L1_Packet to Initialise.

dataPart | Pointer to the dataPart of the Packet if needed for the chosen interaction. Otherwise, it
can be NULL.

Returns

RC_OK if the operation was successful
RC_FAIL if the operation was not successful.

Warning

Do not pass NULL to the parameter ‘dataPart’ unless you know what you’re doing.

6.2.2.2 L1_ReturnCode L1_WaitForPacket (L1_Packet x« Packet, L1_Timeout Timeout)

Resynchronises a Task with the Packet it earlier requested by calling the L1_GetPacketFromPort_A or
L1_PutPacketToPort_A service.

Returns when the Packet is available.

Parameters

Packet | Pointer to a pointer to an L1_Packet, the function will return the L1_Packet here.

Timeout | The number of ticks the function should wait for synchronisation.

Returns

RC_OK If the operation was successful.
RC_TO If the timeout expired.
RC_FAIL If the function was unable to perform the desired operation.

Remarks

SPC Input Port

VirtuosoNext-Designer-1.0.0.0

56 CHAPTER 6. MODULE DOCUMENTATION

6.2.2.3 static __inline__ L1_ReturnCode L1_WaitForPacket NW (L.1_Packet « packet) [static]

Resynchronises a Task with the Packet it earlier requested by calling the L1_GetPacketFromPort_A or
L1_PutPacketToPort_A service. Returns immediately.

Parameters

\ packet \ will contain the pointer to the L1_Packet that was returned to the Task.

Returns
L1_ReturnCode

* RC_OK service completed successfully (there was a waiting Packet in the Port)/.
e RC_FAIL the service failed, Packetx is then set to NULL.

Precondition

-This service must have been preceded by a call to L1_GetPacketFromPort_A or L1_PutPacketToPort-
A.

Postcondition

-The preallocated Packet must contain a pointer to a previously allocated Packet from the Packet Pool,
containing the result of a preceding call to L1_PutPacketToPort_A or L1_GetPacketFromPort_A.

Remarks

SPC Input Port

6.2.2.4 static __inline__ L1_ReturnCode L1_WaitForPacket W (L1_Packet «x packet) [static]

Resynchronises a Task with the Packet it earlier requested by calling the L1_GetPacketFromPort_A or
L1_PutPacketToPort_A service.

Returns when the Packet is available.

Parameters

\ packet \ will contain the pointer to the L1_Packet that was returned to the Task.

Returns
L1_ReturnCode

* RC_OK service completed successfully (there was a waiting Packet in the Port)/.
¢ RC_FAIL the service failed.

Precondition

-This service must have been preceded by a call to L1_GetPacketFromPort_A or L1_PutPacketToPort-
A.

VirtuosoNext-Designer-1.0.0.0

6.3. BASE TYPES 57

Postcondition

-The preallocated Packet must contain a pointer to a previously allocated Packet from the Packet Pool,
containing the result of a preceding call to L1_PutPacketToPort_A or L1_GetPacketFromPort_A.

Remarks

SPC Input Port

6.2.2.5 static __inline__ L1_ReturnCode L1_WaitForPacket WT (L1_Packet ** packet, L1_Timeout
timeout) [static]

A Task calls this service to resynchronize on Packets earlier requested by calling the L1_GetPacketFrom-
Port_A or L1 _PutPacketToPort_ A service. Returns when the Packet is available or when the timeout

expires.

Parameters

packet | will contain the pointer to the L1_Packet that was returned to the Task.

timeout | the number of system ticks the call should wait for a packet to become available.

Returns

L1_ReturnCode
* RC_OK service completed successfully (there was a waiting Packet in the Port)/.
¢ RC_FAIL the service failed, Packet* is set to NULL.
* RC_TO the timeout expired, Packetx is set to NULL.

Precondition

-This service must have been preceded by a call to L1_GetPacketFromPort_A or L1_PutPacketToPort-
A.

Postcondition

-The preallocated Packet must contain a pointer to a previously allocated Packet from the Packet Pool,
containing the result of a preceding call to L1_PutPacketToPort_A or L1_GetPacketFromPort_A.

Remarks

SPC Input Port

6.3 Base Types

Modules

e L1_BYTE
e L1_UINT8
e L1_INT8

VirtuosoNext-Designer-1.0.0.0

58 CHAPTER 6. MODULE DOCUMENTATION

e L1_UINTI16

e L1_INT16

e L1_UINT32

e L1_INT32

e L1_UINTO64

e L1_INT64

e L1 Time

e L1_KernelTicks
e L1_BOOL

e L1_Priority

e L1_TaskArguments
e L1_ErrorCode
¢ L1_ReturnCode

6.3.1 Detailed Description
6.4 L1.BYTE

Variables

e const L1 BYTELI_BYTE MAX
e const L1 BYTEL1 BYTE_MIN

6.4.1 Detailed Description

L1_BYTE is a 8-bit unsigned integer type.

6.4.2 Variable Documentation
6.4.2.1 const L1 _BYTE L1_BYTE_MAX

The maximal value of a L1_BYTE variable.

6.4.2.2 constL1_BYTE L1_.BYTE_MIN
The minimal value of a L1_BYTE variable.

Remarks

SPC Data Types

6.5 L1_UINT8

Variables

e const L1_UINTS8 L1_UINT8_MAX
e const L1_UINTS8 L1_UINT8_MIN

VirtuosoNext-Designer-1.0.0.0

6.6. L1_INTS8

59

6.5.1 Detailed Description

L1_UINTS is a 8-bit unsigned integer type.

6.5.2 Variable Documentation
6.5.2.1 const L1_UINT8 L1_UINT8_MAX

The maximal value of a L1_UINTS variable.

6.5.2.2 constL1_UINT8 L1_UINTS_MIN

The maximal value of a L1_UINTS variable.

6.6 L1.INTS

Variables

e const L1_INT8 L1_INT8_MAX
e const L1_INT8 L1_INT8_MIN

6.6.1 Detailed Description

L1_INTS is a 8-bit signed integer type.

6.6.2 Variable Documentation
6.6.2.1 const L1_INT8 L1_INT8_MAX

The maximal value of a L1_INTS8 variable.

6.6.22 constL1_INT8 L1_INT8_MIN

The maximal value of a L1_INTS8 variable.

6.7 L1_UINT16

Variables

e const L1_UINT16 L1_UINT16_MAX
» const L1_UINT16 L1_UINT16_MIN

6.7.1 Detailed Description

L1_UINT16 is a 16-bit unsigned integer type.

VirtuosoNext-Designer-1.0.0.0

60 CHAPTER 6. MODULE DOCUMENTATION

6.7.2 Variable Documentation
6.7.2.1 const L1_UINT16 L1_UINT16_MAX

The maximal value of a L1_UINT16 variable.

6.7.22 constL1_UINT16 L1_UINT16_MIN

The minimal value of a L1_UINT16 variable.

6.8 L1.INT16

Variables
e const L1_INT16 L1_INT16_MAX

e const L1_INT16 L1_INT16_MIN

6.8.1 Detailed Description

L1_INT16 is a 16-bit signed integer type.

6.8.2 Variable Documentation
6.8.2.1 const L1_INT16 L1_INT16_MAX

The maximal value of a L1_INT16 variable.

6.8.22 constL1_INT16 L1_INT16_MIN

The minimal value of a L1 _INT16 variable.

6.9 L1_UINT32

Variables
e const L1_UINT32 L1_UINT32_MAX

e const L1_UINT32 L1_UINT32_MIN

6.9.1 Detailed Description

UINT?32 is a 32-bit unsigned integer type.

VirtuosoNext-Designer-1.0.0.0

6.10. L1_INT32

61

6.9.2 Variable Documentation
6.9.2.1 const L1_UINT32 L1_UINT32_MAX

The maximal value of a L1_UINT32 variable.

6.9.22 constL1_UINT32 L1_UINT32_MIN

The minimal value of a L1_UINT32 variable.

6.10 L1.INT32

Variables

e const L1_INT32 L1_INT32_MAX
e const L1_INT32 L1_INT32_MIN

6.10.1 Detailed Description

L1_INT32 is a 32-bit signed integer type.

6.10.2 Variable Documentation
6.10.2.1 const L1_INT32 L1_INT32_MAX

The maximal value of a L1_INT?32 variable.

6.10.2.2 const L1_INT32 L1_INT32_MIN

The minimal value of a L1_INT32 variable.

6.11 L1_UINT64

Variables

e const L1_UINT64 L1_UINT64_MAX
e const L1_UINT64 L1_UINT64_MIN

6.11.1 Detailed Description

L1_UINT64 is a 64-bit signed integer type.

VirtuosoNext-Designer-1.0.0.0

62 CHAPTER 6. MODULE DOCUMENTATION

6.11.2 Variable Documentation
6.11.2.1 const L1_UINT64 L1_UINT64_MAX

The maximal value of a L1_INT64 variable.

6.11.2.2 const L1_UINT64 L1_UINT64_MIN

The minimal value of a L1_INT64 variable.

6.12 L1.INT64

Variables

e const L1_INT64 L1_INT64_MAX
e const L1_INT64 L1_INT64_MIN

6.12.1 Detailed Description

L1_INT64 is a 64-bit signed integer type.

6.12.2 Variable Documentation
6.12.2.1 const L1_INT64 L1_INT64_MAX

The maximal value of a L1_INT64 variable.

6.12.2.2 const L1_INT64 L1_INT64_MIN

The minimal value of a L1_INT64 variable.

6.13 L1 _Time

Variables

e const L1_UINT32 L1_Time_MAX
e const L1_UINT32 L1_Time_MIN

6.13.1 Detailed Description

6.13.2 Variable Documentation
6.13.2.1 const L1_UINT32 L1_Time_MAX

The maximal value of a L1_Time variable.

VirtuosoNext-Designer-1.0.0.0

6.14. L1_KERNELTICKS 63

6.13.2.2 const L1_UINT32 L1_Time_MIN

The minimal value of a L1_Time variable.

6.14 L1 _KernelTicks

Variables

e const L1_UINT32 L1_KernelTicks. MAX
e const L1_UINT32 L1_KernelTicks_MIN

6.14.1 Detailed Description

6.14.2 Variable Documentation
6.14.2.1 const L1_UINT32 L1_KernelTicks_MAX

The maximal value of a KernelTicks variable.

6.14.2.2 const L1_UINT32 L1_KernelTicks_MIN

The minimal value of a L1_KernelTicks variable.

6.15 L1 BOOL

Macros

+ #define L1_FALSE 0U

* #define L1_TRUE 1U
6.15.1 Detailed Description

L1_BOOL is a basic integer type sufficient to represent the values: L1_TRUE and L1_FALSE. The size is
target dependent.

6.15.2 Macro Definition Documentation
6.15.2.1 #define L1_FALSE 0U

Definition of the value for L1_FALSE.

6.15.2.2 #define L1_TRUE 1U

Definition of the value for L1_TRUE.

VirtuosoNext-Designer-1.0.0.0

64 CHAPTER 6. MODULE DOCUMENTATION

6.16 L1 Priority

6.16.1 Detailed Description

L1_Priority is a basic unsigned integer type sufficient to represent the values from 0O to 255, identifying the
priority of a Task or a Packet.

6.17 L1 _TaskArguments

6.17.1 Detailed Description

Argument to a Task Entry Point.

6.18 Types related to Timing

Typedefs

e typedef L1_UINT32 L1_KernelTicks
e typedef L1_UINT32 L1_Time
e typedef L1_UINT32 L1_Timeout

6.18.1 Detailed Description

6.18.2 Typedef Documentation
6.18.2.1 typedef L1_UINT32 L1_KernelTicks

This data type

See Also

L1 _KernelTicks_ MIN
L1_KernelTicks. MAX

6.18.2.2 typedef L1_UINT32 L1_Time

This data type is used to represent the number of expired ticks.

See Also

L1_Time_ MIN
L1_Time_MAX

VirtuosoNext-Designer-1.0.0.0

6.19. L1_ERRORCODE 65

6.18.2.3 typedef L1_UINT32 L1_Timeout
L1_Timeout is a basic unsigned integer type that represents a timeout value in milliseconds. The maximum
value, allowed by the appropriate L1_Timeout integer type, is interpreted as an infinite timeout. For exam-

ple if L1_Timeout is provided by the means of a 16-bit or 32bit unsigned integer, then the infinite timeout is
OxFFFF(FFFF) Hex. The infinite timeout is (should be) referred as named constant L1_Infinite_ TimeOut

6.19 L1 _ErrorCode

Typedefs

e typedef L1_UINT32 L1_ErrorCode

Variables

e const L1_ErrorCode L1_ErrorCode_ MAX

6.19.1 Detailed Description

L1-Service error code.

6.19.2 Typedef Documentation
6.19.2.1 typedef L1 _UINT32 L1_ErrorCode

This data type is used to represent error codes in VirtuosoNext.

Warning

Only the upper 24bit of the L1_UINT32 are being used.

6.19.3 Variable Documentation
6.19.3.1 const L1_ErrorCode L1_ErrorCode_MAX

The maximal value of a L1_ErrorCode variable.

6.20 L1 _ReturnCode

Macros

¢ #define RC_FAIL 0x1

¢ #define RC_FAIL_END 0x80

¢ #define RC_FAIL_NULL_POINTER 0x10
e #define RC_FAIL_OUT_OF_MEM 0x20

¢ #define RC_FAIL_UNSUPPORTED 0x3

¢ #define RC_OK 0x0

¢ #define RC_TO 0x2

VirtuosoNext-Designer-1.0.0.0

66 CHAPTER 6. MODULE DOCUMENTATION

Typedefs

e typedef L1_UINT32 L1_ReturnCode

6.20.1 Detailed Description

Return code representation.

6.20.2 Macro Definition Documentation
6.20.2.1 #define RC_FAIL 0x1

Return code for a failed request

6.20.2.2 #define RC_FAIL_END 0x80

VirtuosoNext has an area of 128 default return codes, any service that needs to define additional ones shall
do starting at 129 (RC_FAIL_END + 1)

6.20.2.3 #define RC_FAIL_NULL_POINTER 0x10

A required pointer was NULL instead of the correct value.

6.20.2.4 #define RC_FAIL_OUT_OF_MEM 0x20

A memory allocation could not be served as the system is out of free memory.

6.20.2.5 #define RC_FAIL_UNSUPPORTED 0x3

Return code for if a request is not supported.

6.20.2.6 #define RC_OK 0x0

Return code for a successful request

6.20.2.7 #define RC_TO 0x2

Return code for a failed request after the timeout expired.

6.20.3 Typedef Documentation
6.20.3.1 typedef L1_UINT32 L1_ReturnCode

This data type represents a complete return code from a Function or a Service.

VirtuosoNext-Designer-1.0.0.0

6.21. VIRTUOSONEXT HUB 67

6.21 VirtuosoNext Hub

Modules

¢ Black Board Hub
e Data Event Hub

¢ Data-Queue Hub
* Event Hub

¢ FIFO Hub

* Memory Pool Hub
¢ Packet Pool Hub

e Port Hub

* Resource Hub

* Semaphore Hub

* Memory Block Queue Hub

6.21.1 Detailed Description
6.22 Developer Information

Data Structures

e struct _struct_L1_Hub_

Macros

e #define L1_HubNodeID(h) (((h) & L1_GLOBALID_MASK) >> 8)
e #define L1_id2localhub(h) (&L1_LocalHubs[((h) & ~L1_GLOBALID_MASK)])
¢ #define L1_isControlPacket(p) ((((p)->ServicelD) % 256) == L1_SID_IOCTL_HUB)

e #define L1_isLocalHubID(h) (((h) & L1_GLOBALID_MASK) == ((L1_KernellnputPortID) & L1-
_GLOBALID_MASK))

#define L1_isPutPacket(p) ((((p)->ServicelD) % 256) == L1_SID_PUT_TO_HUB)

Typedefs

* typedef void(x L1_HubControlFunction)(L1_Hub xhub, L1_Packet «packet, L1_BYTE ioctl_type)
¢ typedef void(x L1_HubStateUpdateFunction)(L1_Hub xhub, L1_Packet xpacket)
* typedef L1_BOOL(x L1_HubSyncConditionFunction)(L1_Hub xhub, L1_Packet xpacket)

* typedef void(x L1_HubSynchronizeFunction)(L1_Hub xhub, L1_Packet *packet, L1_Packet xwaiting-
Packet)

Functions

* void L1_Hub_exchangePacketData (L.1_Packet xpacket, L1_Packet *waitingPacket)

VirtuosoNext-Designer-1.0.0.0

68 CHAPTER 6. MODULE DOCUMENTATION

6.22.1 Detailed Description

6.22.2 Macro Definition Documentation
6.22.2.1 #define L1_HubNodelD(h) (((h) & L1_GLOBALID_MASK) >> 8)

Extracts the Node ID part from the L1_Hub ID given in parameter h.

Parameters

\ h | L1_HublID from which to extract the Node IF part.

Returns
The Node ID part of the L1_HubID h.

6.22.2.2 #define L1_id2localhub(h) (&L1_LocalHubs[((h) & ~L1_GLOBALID_MASK)])
Converts the L1_HubID h to a pointer to the Hub on the local Node.

Parameters

‘ h | The L1_HubID to be converted.

Returns
The pointer to the Hub identified by the L.1_HubID h.

Warning

This function does not check whether this L1_HubID identifies a local Hub. For this the developer
must use L1_isLocalHubID().

See Also

L1_isLocalHubID

6.22.2.3 #define L1_isControlPacket(p) ((((p)->ServicelD) % 256) == L1_SID_IOCTL_HUB)

Determines whether the L1_Packet parameter p points to contains an IOCTL-Request

Parameters

‘ p | Pointer the L1_Packet to be checked.

Returns

L1_TRUE The L1_Packet pointed to by p is a Control-Packet
L1_FALSE Otherwise.

VirtuosoNext-Designer-1.0.0.0

6.22. DEVELOPER INFORMATION 69

6.22.2.4 #define L1_isLocalHubID(h) (((h) & L1_GLOBALID_MASK) == ((L1_KernellnputPortID) &
L1_GLOBALID_MASK))

Checks whether or not the Hub identified by the L1_HubID h is on this Node, i.e. is locally available.

Parameters

\ h \ The L1_HubID to be checked.

Returns

L1_TRUE The HubID identifies a Hub on this Node.
L1_FALSE Otherwise.

6.22.2.5 #define L1_isPutPacket(p) ((((p)->ServicelD) % 256) == L1_SID_PUT_TO_HUB)

Remarks

SPC Number of Tasks and Hubs
SPC Number of Nodes
SPC System-Wide IDs

Determines whether the L1_Packet parameter p points to contains a Put-Request

Parameters

‘ p ‘ Pointer the L1_Packet to be checked.

Returns

L1_TRUE The L1_Packet pointed to by p is a Put-Packet
L1_FALSE Otherwise.

6.22.3 Typedef Documentation

6.22.3.1 typedef void(+x L1_HubControlFunction)(L1_Hub xhub, L1_Packet «packet, L1_BYTE ioctl_type)

Toctl like function, e.g. to initialize, set and get state parameters. This function can also be used to imple-
ment hubs which abstract hardware devices.

Parameters

hub

Pointer to the generic Hub state structure associated with this Hub.

packet

Pointer to the L1_Packet which caused the function to be called. It will contain addi-
tional information.

ioctl_type

Control operation to be executed (L1_IOCTL_HUB_OPEN only for this hub).

VirtuosoNext-Designer-1.0.0.0

70 CHAPTER 6. MODULE DOCUMENTATION

6.22.3.2 typedef void(x L1_HubStateUpdateFunction)(L1_Hub xhub, L1_Packet «packet)

Remarks

SPC Hubs are derived from the Generic Hub

This function updates the state of a Hub.

Parameters

hub | Pointer to the generic Hub state structure associated with this Hub.

packet | Pointer to the L1_Packet which should be used to update the Hub state.

Precondition

Empty waiting list, as complimentary packets already accounted for.

6.22.3.3 typedef L1_BOOL(x L1_HubSyncConditionFunction)(L.1_Hub xhub, L1_Packet xpacket)

This function checks whether or not the Packet results in a synchronisation with the Hub taking place.

Parameters

hub | Pointer to the generic Hub state structure associated with this Hub.

packet | Pointer to the L1_Packet for which to determine whether a synchronisation happened
or not.

Returns

L1_TRUE Synchronisation happened.
L1_FALSE Otherwise.

Precondition

Empty waiting list and exactly one packet non-null

6.22.3.4 typedef void(+ L1_HubSynchronizeFunction)(L1_Hub :xhub, L1_Packet «packet, L1_Packet
«waitingPacket)

Function to be called when the Generic-Hub detects that synchronisation was achieved, i.e. a Packet waiting
in the Hub-WaitingList, and it’s counter part just having arrived. Thus both Packet and WaitingPacket will
never be NULL.

The function shall return the Packets to their Tasks!

Parameters

hub | Pointer to the generic Hub state structure associated with this Hub.

packet | Pointer to the L1_Packet which caused the function to be called.

waitingPacket | Pointer to the L1_Packet which was waiting on the Hub-WaitingList.

Precondition

hub NOT NULL
packet NOT NULL
waitingPacket NOT NULL

VirtuosoNext-Designer-1.0.0.0

6.23. BLACK BOARD HUB 71

6.22.4 Function Documentation
6.22.4.1 void L1_Hub_exchangePacketData (L.1_Packet « packet, L.1_Packet « waitingPacket)

This function copies the data from the Put-Packet to the Get-Packet. It automatically determines which one
is which.

Parameters

packet | Pointer to the L1_Packet that just arrived from a Task.
waitingPacket | Pointer to the Packet that was waiting in the Hub.

Precondition

packet NOT NULL
waitingPacket NOT NULL

6.23 Black Board Hub

Data Structures

¢ struct L1_BlackBoard_Board
e struct L1 _BlackBoard HubState

Functions

e L1_BOOL BlackBoardHub_SyncCondition (L1_Hub *xHub, L1_Packet xPacket)

¢ void BlackBoardHub_Synchronize (L1_Hub xhub, L1_Packet s«packet, L.1_Packet xwaitingPacket)

¢ void BlackBoardHub_Update (L1_Hub «Hub, L1_Packet «Packet)

e static __inline__ L1_ReturnCode L1_Drv_Isr_UpdateBlackBoard NW (L1_HubID hubID, L1_-
Packet «packet, L1_BYTE xmessage, L1_UINT32 messageSize)

e static__inline__ L1_ReturnCode L1_Drv_Isr_UpdateDataEvent_NW (L1_HubID hubID, L.1_Packet
xpacket, L1_BYTE xdata, L1_UINT32 length)

e static __inline__ L.1_BOOL L1_isBlackBoardHub (L1_Hub xpHub)

e L1_ReturnCode L1_ReadBlackBoard (L1_HubID hubID, L1_Packet xpacket, L1_BYTE xmessage-
Buffer, L1_UINT32 bufferSize, L1_UINT32 xreceivedMessageSize, L.1_UINT32 smessageNumber,
L1_Timeout Timeout)

e static__inline__ L1_ReturnCode L1_ReadBlackBoard_NW (L1_HubID hubID, L1_BYTE xmessage-
Buffer, L1_UINT32 bufferSize, L1_UINT32 xreceivedMessageSize, L1_UINT32 xmessageNumber)

e static__inline__ L1_ReturnCode L1_ReadBlackBoard_W (L1_HubID hubID, L1_BYTE xmessage-
Buffer, L1_UINT32 bufferSize, L1_UINT32 xreceivedMessageSize, L1_UINT32 xmessageNumber)

e static__inline__ L1_ReturnCode L1_ReadBlackBoard_WT (L.1_HubID hubID, L1_BYTE xmessage-
Buffer, L1_UINT32 bufferSize, L1_UINT32 xreceivedMessageSize, L1_UINT32 xmessageNumber,
L1_Timeout timeout)

e L1_ReturnCode L1_UpdateBlackBoard (L1_HubID hubID, L1_Packet *packet, L1_BYTE xmessage,
L1_UINT32 messageSize, L1_Timeout Timeout)

e static__inline__ L1_ReturnCode L1_UpdateBlackBoard_NW (L1_HubID hubID, L1_BYTE smessage,
L1_UINT32 messageSize)

e L1_ReturnCode L1_WipeBoard (L1_HubID hubID, L1_Packet *packet, L1_Timeout Timeout)

e static __inline__ L.1_ReturnCode L.1_WipeBoard_NW (L.1_HubID hubID)

VirtuosoNext-Designer-1.0.0.0

72 CHAPTER 6. MODULE DOCUMENTATION

6.23.1 Detailed Description

6.23.2 Hub Description

The Blackboard Hub is meant as a ‘safe global data structure’, where data can be published to. It is safer
than a normal global data structure for the following reasons:

 There is no read operation taking place while a write operation takes place.

* The readers of the black board get told how many times the message on the board has been updated
already, thus they can check whether they missed an update and thus take corrective action if needed.

* If the blackboard is empty, i.e. no data is present, the readers will be put onto the Waiting List of the
Hub (_WT and _NW semantics are obeyed) and will be released upon the writer posting a message
onto the board. There are two reasons why no data might be present on the board, the first one being
because no one has written any data yet, i.e. after system start up. The second reason is that the
board has been wiped.

» The readers have their own private copy of the contents of the blackboard and they decide when it
will be updated with new contents. This prevents changes of the global variable contents half way
during processing.

Remarks

REQ Blackboard
SPC Blackboard

6.23.3 Visual Designer

Figure 6.2: Application Diagram Icon

6.23.3.1 Properties

The Entity has the following Properties:

* node: The name of the Node to which the Entity is mapped.

* name: Name of the Entity instance.

6.23.4 Function Documentation
6.23.4.1 L1_BOOL BlackBoardHub_SyncCondition (L1_Hub x Hub, L1_Packet x Packet)

This function returns L1_TRUE when synchronization must happen in a blackboard hub when receiving a
packet.

VirtuosoNext-Designer-1.0.0.0

6.23. BLACK BOARD HUB 73

Parameters

Hub | ID of the blackboard hub.

Packet | Pointer to the L1_Packet received at the blackboard Hub.

Returns
L1_BOOL:
* L1_FALSE Synchronization is not needed.
e L1_TRUE Synchronization must take place.

Precondition

empty waiting list.

Postcondition

None

6.23.4.2 void BlackBoardHub_Synchronize (L.1_Hub * hub, L.1_Packet *x packet, L1_Packet
waitingPacket)

This function shall update the state of the Hub using the message contained in the L.1_Packet packet and
then return it to its Task. If packet->DataSize = 0 the function shall wipe the board, and insert the L1-
_Packet waitingPacket onto the WaitingList of the Hub again. Otherwise, it shall update the content of
the L1_Packet waitingPacket with the content of the Black Board, and return it to its Task. If the Hub
WaitingList is not empty, each waiting Packet is removed, their content updated with the content of the
Black Board and then returned to their Tasks.

Parameters

hub | Pointer to a hub of type Black Board.

packet | Pointer to the newly arrived L1_Packet.

waitingPacket | Pointer to the L1_Packet which is complementary to the one in the parameter packet.

Precondition

hub NOT NULL

packet NOT NULL

waitingPacket NOT NULL

packet->ServicelD = L1_SID_PUT_TO_HUB
waitingPacket->ServicelD = L1_SID_GET_FROM_HUB

Postcondition
packet->Status = RC_OK

VirtuosoNext-Designer-1.0.0.0

74 CHAPTER 6. MODULE DOCUMENTATION

6.23.4.3 void BlackBoardHub_Update (L1_Hub x Hub, L.1_Packet « Packet)

This function performs a blackboard update operation. The packet and blackboard have to be updated when
a message is written to it (put packet), and when data is read (get Packet). When receiving a Put packet,
the data of the packet is copied to the blackboard as a message, the size of the data in the blackboard is
updated and the number of messages increases. When receiving a Get packet, the data from the blackboard
is copied to the packet. The message is kept in the blackboard until a wipe operation occurs.

Parameters

Hub | ID which identifies the blackboard hub to be updated.

Packet | Put or Get packet that updates the blackboard..

Precondition

None

Postcondition

None

6.23.4.4 static __inline__ L1_ReturnCode L1_Drv_Isr_UpdateBlackBoard_NW (L1_HubID hubiD,
L1_Packet « packet, L1_BYTE « message, L1_UINT32 messageSize) [static]

Writes a message onto the Black Board. This function returns directly, like an Asynchronous Interaction,
but the packet will never be returned to the ISR.

Parameters

hubID | of type L1_HubID, which identifies the Black Board Hub.

packet | Pointer to an initialised L1_Packet to be used for this interaction.

message | Pointer to the message to write onto the Black Board.

messageSize | Size of the message that should be written onto the Black Board. The size of the
message must be less or equal ‘L1_PACKET_SIZE - sizeof(L1_UINT32)’, otherwise
the interaction will fail.

Returns
L1_ReturnCode:

¢ RC_OK service successful
e RC_FAIL service failed

Precondition

¢ None

Postcondition

¢ None

VirtuosoNext-Designer-1.0.0.0

6.23. BLACK BOARD HUB 75

Warning

Only to be used within an ISR, not within a Task!

See Also

L1_Drv_Isr_initialisePacket

Remarks

SPC Packets from an ISR

Remarks

SPC Data size range

6.23.4.5 static __inline__ L1_ReturnCode L1_Drv_Isr_UpdateDataEvent NW (L1_HubID hubID,
L1_Packet « packet, L1 BYTE « data, L1_UINT32 length) [static]

This interaction posts data to the DataEvent-Hub id. If the DataEvent-Hub previously contained data

already then this will be overwritten, as it has been succeeded by the new data. This function returns
directly, like an Asynchronous Interaction, but the packet will never be returned to the ISR.

Parameters

hubID | ID of the DataEvent-Hub to which to post the data.

packet | Pointer to an initialised L1_Packet to be used for this interaction.

data | Pointer to the buffer which contains the data to be posted.

length | Number of bytes that are in the buffer pointed to by data. The maximum number of
bytes that can be posted is L1_PACKET_DATA_SIZE.

Returns
L1 ReturnCode:

¢ RC_OK service successful
¢ RC_FAIL service failed

Precondition

¢ None

Postcondition

¢ None

Warning

Only to be used within an ISR, not within a Task!

VirtuosoNext-Designer-1.0.0.0

76 CHAPTER 6. MODULE DOCUMENTATION

See Also

L1_Drv_Isr_initialisePacket

Remarks

SPC Packets from an ISR

Remarks

SPC Data size range

6.23.4.6 static __inline__ L1_BOOL L1 _isBlackBoardHub (L1_Hub x pHub) [static]

Checks whether or not the given data structure represents a BlackBoard-Hub.

Parameters

pHub | Pointer to the data structure, of type L1_Hub, which should be checked whether or not
it represents a BlackBoard-Hub.

Returns

L1_TRUE if the data structure represents a BlackBoard-Hub.
L1_FALSE otherwise.

6.23.4.7 L1_ReturnCode L1_ReadBlackBoard (L1_HubID hubiD, 1.1_Packet * packet, L1_BYTE x
messageBuffer, L1_UINT32 bufferSize, L1_UINT32 « receivedMessageSize, L1_UINT32 «
messageNumber, L.1_Timeout Timeout)

Reads a message from a Black Board Hub and copies it into a buffer.

Parameters

hubID | 1D of the Black Board Hub.

packet | Packet to be used for the interaction. The data and data size fields of this packet are
copied into the message buffer.

messageBuffer | Pointer to the buffer where to store the message retrieved from the Black Board Hub.
If NULL this function returns RC_FAIL;

bufferSize | size of the buffer, must be greater or equal to the message retrieved from the Black
Board Hub, otherwise RC_FAIL will be returned.

received- | Pointer to a variable of type L1_UINT32 where the size in byte of the retrieved message
MessageSize | will be stored. This parameter may be set to NULL if this information is not desired.

message- | Pointer to a variable of type L1_UINT32 where the number of the message will be
Number | stored. The message number gets incremented by the Black Board Hub every time a
Task writes a message onto the board.

Timeout | Timeout value for the operation. When set to max, timeout is disabled.

VirtuosoNext-Designer-1.0.0.0

6.23. BLACK BOARD HUB 77

Returns

L1_ReturnCode:

¢ RC_OK operation successful

* RC_FAIL operation failed

* RC_TO operation timed out

Precondition

¢ None

Postcondition

¢ None

6.23.4.8 static __inline__ L1_ReturnCode L1_ReadBlackBoard NW (L1_HubID hubID, L1_BYTE «
messageBuffer, L1_UINT32 bufferSize, L1_UINT32 x receivedMessageSize, L1_UINT32 «
messageNumber) [static]

Reads a message from a Black Board Hub and copies it into a buffer.

Parameters

hubID

of type L1_HubID, which identifies the Black Board Hub.

messageBuffer

pointer to the buffer where to store the message retrieved from the Black Board Hub. If
NULL this interaction will return RC_FAIL;

bufferSize

size of the buffer, must be greater or equal to the message retrieved from the Black
Board Hub, otherwise RC_FAIL will be returned.

received-
MessageSize

pointer to a variable of type L1_UINT32 where the size in byte of the retrieved message
will be stored. This parameter may be set to NULL if this information is not desired.

message-
Number

pointer to a variable of type L1_UINT32 where the number of the message will be
stored. The message number gets incremented by the Black Board Hub every time a
Task writes a message onto the board.

Returns

L1_ReturnCode:

¢ RC_OK service successful
¢ RC_FAIL service failed

Precondition

¢ None

Postcondition

¢ None

VirtuosoNext-Designer-1.0.0.0

78

CHAPTER 6. MODULE DOCUMENTATION

6.23.4.9 static __inline__ L1_ReturnCode L1_ReadBlackBoard W (L1_HubID hubID, L1 BYTE
messageBuffer, L1_UINT32 bufferSize, L1_UINT32 x receivedMessageSize, L1_UINT32 «

messageNumber)

[static]

Reads a message from a Black Board Hub and copies it into a buffer.

Parameters

hubID

of type L1_HubID, which identifies the Black Board Hub.

messageBuffer

pointer to the buffer where to store the message retrieved from the Black Board Hub. If
NULL this interaction will return RC_FAIL;

bufferSize

size of the buffer, must be greater or equal to the message retrieved from the Black
Board Hub, otherwise RC_FAIL will be returned.

received-
MessageSize

pointer to a variable of type L1_UINT32 where the size in byte of the retrieved message
will be stored. This parameter may be set to NULL if this information is not desired.

message-
Number

pointer to a variable of type L1_UINT32 where the number of the message will be
stored. The message number gets incremented by the Black Board Hub every time a
Task writes a message onto the board.

Returns

L1_ReturnCode:
¢ RC_OK service successful
e RC_FAIL service failed

Precondition

¢ None

Postcondition

¢ None

6.23.4.10 static __inline__ L.1_ReturnCode L1_ReadBlackBoard WT (L1_HubID hubiD, L1_BYTE
x messageBuffer, L1_UINT32 bufferSize, L1_UINT32 « receivedMessageSize, L1_UINT32 x

messageNumber, 1.1_Timeout timeout)

[static]

Reads a message from a Black Board Hub and copies it into a buffer.

Parameters

hubID

of type L1_HubID, which identifies the Black Board Hub.

messageBuffer

pointer to the buffer where to store the message retrieved from the Black Board Hub. If
NULL this interaction will return RC_FAIL;

bufferSize

size of the buffer, must be greater or equal to the message retrieved from the Black
Board Hub, otherwise RC_FAIL will be returned.

received-
MessageSize

pointer to a variable of type L1_UINT32 where the size in byte of the retrieved message
will be stored. This parameter may be set to NULL if this information is not desired.

message-
Number

pointer to a variable of type L1_UINT32 where the number of the message will be
stored. The message number gets incremented by the Black Board Hub every time a
Task writes a message onto the board.

VirtuosoNext-Designer-1.0.0.0

6.23. BLACK BOARD HUB 79

timeout | of type L1_Timeout, the number of system ticks the call should wait for synchronisa-
tion.

Returns

L1_ReturnCode:
¢ RC_OK service successful
¢ RC_FAIL service failed
¢ RC_TO service timed out

Precondition

¢ None

Postcondition

¢ None

6.23.4.11 L1_ReturnCode L1_UpdateBlackBoard (L1_HubID hubID, 1L1_Packet x packet, L1 BYTE x
message, L1_UINT32 messageSize, 1.1_Timeout Timeout)

Writes a message onto the Black Board. This function copies the message into the packet and inserts it into
the hub with the specified timeout.

Parameters

hubID | ID of the identifies the blackboard hub.

packet | Packet to be used to write message to blackboard hub.

message | Pointer to the message to write onto the Black Board.

messageSize | Size of the message that should be written onto the Black Board. The size of the
message must be less or equal ‘L1_PACKET_SIZE - sizeof(L1_UINT32)’, otherwise
the interaction will fail.

Timeout | Timeout value the operation.

Returns
L1 ReturnCode:

¢ RC_OK service successful
¢ RC_FAIL service failed
¢ RC_TO service timed out

Precondition

¢ None

Postcondition

¢ None

VirtuosoNext-Designer-1.0.0.0

80 CHAPTER 6. MODULE DOCUMENTATION

6.23.4.12 static __inline__ L1_ReturnCode L1_UpdateBlackBoard_NW (L1_HubID hubiD, L1_BYTE x
message, L1_UINT32 messageSize) [static]

Writes a message onto the Black Board.

Parameters

hublD | of type L1_HubID, which identifies the Black Board Hub.

message | Pointer to the message to write onto the Black Board.

messageSize | Size of the message that should be written onto the Black Board. The size of the
message must be less or equal ‘L1_PACKET_SIZE - sizeof(L1_UINT32)’, otherwise
the interaction will fail.

Returns
L1 _ReturnCode:

¢ RC_OK service successful
e RC_FAIL service failed

Precondition

¢ None

Postcondition

¢ None

6.23.4.13 L1_ReturnCode L1_WipeBoard (L1_HubID hubID, 1.1_Packet « packet, I.1_Timeout Timeout
)

This function erases the message from the black board. Any Task trying to copy the message from the
black board will be put onto the waiting list. Interactions with the blackboard can have an infinite timeout,
or be set to expire after a specific time.

Parameters

hubID | 1D which identifies the blackboard hub.

packet | Message to be written to the blackboard.

Timeout | Amount of milliseconds to wait for the interaction to expire. Can be set to the max
value to wait forever.

Returns

L1_ReturnCode:
* RC_OK service successful
¢ RC_FAIL service failed
¢ RC_TO service timed out

Precondition

¢ None

Postcondition

¢ None

VirtuosoNext-Designer-1.0.0.0

6.24. DATA EVENT HUB 81

6.23.4.14 static __inline__ L1_ReturnCode L1_WipeBoard NW (L1_HubID hubID) [static]

This interaction erases the message from the black board. Any Task trying to copy the message from the
black board will be put onto the waiting list.

Parameters

‘ hubID | of type L1_HubID, which identifies the Black Board Hub.

Returns
L1_ReturnCode:
¢ RC_OK service successful

¢ RC_FAIL service failed

Precondition

¢ None

Postcondition

¢ None

6.24 Data Event Hub

Data Structures

e struct L1_DataEvent_HubState

Functions

¢ void DataEventHub_Jloctl (L1_Hub *xHub, L1_Packet xPacket, L1_BYTE ioctl_type)

e L1_BOOL DataEventHub_SyncCondition (L1_Hub xHub, L1_Packet xPacket)

¢ void DataEventHub_Synchronize (L1_Hub xhub, L1_Packet xpacket, L1_Packet xwaitingPacket)
¢ void DataEventHub_Update (L1_Hub *Hub, L1_Packet *Packet)

e static __inline__ L.1_ReturnCode L1_ClearDataEvent_ NW (L1_HublID id)

e static __inline_ L1_ReturnCode L1_ReadDataEvent_ NW (L1_HubID id, L1_BYTE xdata, L1_U-
INT32 length, L1_UINT32 xpNbrOfReadBytes)

e static __inline_ L1_ReturnCode L1_ReadDataEvent_W (L1_HubID id, L1_BYTE x*data, L1_UI-
NT32 length, L1_UINT32 «pNbrOfReadBytes)

e static __inline_ L1_ReturnCode L1_ReadDataEvent. WT (L1_HublID id, L1_BYTE xdata, L1_U-
INT32 length, L1_UINT32 xpNbrOfReadBytes, L1_Timeout timeout)

e static __inline__ L1_ReturnCode L1_UpdateDataEvent_NW (L1_HubID id, L1_BYTE x*data, L1_-
UINT32 length)

VirtuosoNext-Designer-1.0.0.0

82 CHAPTER 6. MODULE DOCUMENTATION

6.24.1 Detailed Description

The DataEvent-Hub is a crossover between am Event-Hub and a Port-Hub. It’s usage scenario is to effi-
ciently transfer information about state changes from a Sender-Task to a Receiver-Task. For this purpose
the Hub allows the Sender-Task to post data together with raising and Event. Upon a data post, the Hub
will wake up the first Task on it’s waiting list and pass the data to it as well. If there is currently no Task
on the waiting list, the Hub will store the data in an internal buffer and remember that data was posted to
it. Upon a Task reading the data the Hub will forget the previously pending data. Thus the Hub performs
an auto-reset.

Remarks

REQ DataEvent
SPC Data Event

6.24.2 Visual Designer

©

Figure 6.3: Application Diagram Icon

6.24.2.1 Properties

The Entity has the following Properties:

* node: The name of the Node to which the Entity is mapped.

* name: Name of the Entity instance.

6.24.3 Function Documentation
6.24.3.1 void DataEventHub_loctl (L1_Hub x Hub, L1_Packet « Packet, L1_BYTE ioctl_type)

This function shall handle the initialisation and the clearing of the DataEvent Hub.

Parameters

Hub | Pointer to a hub of type L1_DATAEVENT.

Packet | Pointer to the L1_Packet with the request.

ioctl_type | The type of IOCTL Operation requested. It may have only the following values:
e L1_IOCTL_HUB_OPEN Brings the Hub to it’s default state.

6.24.3.2 L1_BOOL DataEventHub_SyncCondition (L1_Hub * Hub, L.1_Packet « Packet)

This function shall check whether or not the incoming request results in a sychronisation or not.

VirtuosoNext-Designer-1.0.0.0

6.24. DATA EVENT HUB 83

Parameters

Hub | Pointer to a hub of type LI_DATAEVENT.

Packet | Pointer to the L1_Packet with the request.

Returns

L1_TRUE Synchronisation was achieved.
L1_FALSE Synchronisation was not achieved.

6.24.3.3 void DataEventHub_Synchronize (L.1_Hub x hub, L1_Packet * packet, 1.1_Packet x
waitingPacket)

This function shall transfer the data of the L1_Packet packet to the L1_Packet waitingPacket, and then
return both L1_Packets to their Tasks.

Parameters

hub | Pointer to a hub of type L1_DATAEVENT.

packet | Pointer to the newly arrived L1_Packet.

waitingPacket | Pointer to the L1_Packet which is complementary to the one in the parameter packet.

Precondition

hub NOT NULL

packet NOT NULL
waitingPacket NOT NULL
packet is a Put-Packet
waitingPacket is a Get-Packet

Postcondition

waitingPacket->Data = packet->Data
waitingPacket->DataSize = packet->DataSize
packet->Status = RC_OK
waitingPacket->Status = RC_OK

6.24.3.4 void DataEventHub _Update (L.1_Hub « Hub, L.1_Packet * Packet)

This function shall update the state of the DataEvent Hub based on the content of the L1_Packet Packet.
If Packet is a Put-Packet then the data gets copied into an internal buffer, together with the data-size, and
the DataEvent is marked as raised. If Packet is a Get-Packet then the internal buffer contents get copied to
Packet together with the data-size, and the DataEvent is marked as not raised.

Parameters

Hub | Pointer to a hub of type L1_DATAEVENT.

Packet | Packet Pointer to the L1_Packet with the request.

VirtuosoNext-Designer-1.0.0.0

84 CHAPTER 6. MODULE DOCUMENTATION

6.24.3.5 static __inline__ L1_ReturnCode L1_ClearDataEvent NW (L1_HubIDid) [static]

This interaction clears the content of a DataEvent-Hub. This means the Hub forgets that data has been
posted to it previously.

Parameters

\ id | ID of the DataEvent-Hub to clear.

Returns

RC_OK The DataEvent-Hub could be cleared.
RC_FAIL Otherwise.

6.24.3.6 static __inline__ L1_ReturnCode L1_ReadDataEvent_ NW (L1_HubID id, L1_BYTE x data,
L1_UINT32 length, L1_UINT32 « pNbrOfReadBytes) [static]

This interaction tries to read data from a DataEvent-Hub. This interaction always returns directly.

Parameters

id | ID of the DataEvent-Hub from which to read data.

data | Pointer to the buffer which should contain the data that was read from the DataEvent--
Hub.

length | The size of the buffer pointed to by data in Bytes. It must be equal or larger than the
data posted to the DataEvent-Hub, otherwise the interaction will fail with RC_FAIL.

PpNbrOfRead- | Pointer to a variable of type L1_UINT32 which will contain the number of Bytes that
Bytes | were actually read from the DataEvent-Hub.

Returns

RC_OK The data could be read.
RC_FAIL The data could not be read. One cause of this is a too small buffer.

6.24.3.7 static __inline__ L1_ReturnCode L1_ReadDataEvent W (L1_HubID id, L1 _BYTE « data,
L1_UINT32 length, L1_UINT32 « pNbrOfReadBytes) [static]

This interaction tries to read data from a DataEvent-Hub. If the DataEvent-Hub is currently holding data
the interaction will return directly, otherwise it will wait until another Task posts data to the Hub.

Parameters

id | ID of the DataEvent-Hub from which to read data.

data | Pointer to the buffer which should contain the data that was read from the DataEvent--
Hub.

length | The size of the buffer pointed to by data in Bytes. It must be equal or larger than the
data posted to the DataEvent-Hub, otherwise the interaction will fail with RC_FAIL.

PNbrOfRead- | Pointer to a variable of type L1_UINT32 which will contain the number of Bytes that
Bytes | were actually read from the DataEvent-Hub.

Returns

RC_OK The data could be read.
RC_FAIL The data could not be read. One cause of this is a too small buffer.

VirtuosoNext-Designer-1.0.0.0

6.25. DATA-QUEUE HUB 85

6.24.3.8 static __inline__ L1_ReturnCode L1_ReadDataEvent WT (L1_HubID id, L1 BYTE « data,
L1_UINT32 length, L1_UINT32 « pNbrOfReadBytes, L.1_Timeout timeout) [static]

This interaction tries to read data from a DataEvent-Hub. If the DataEvent-Hub is currently holding data
the interaction will return directly, otherwise it will wait until either another Task posts data to the Hub, or
the timeout expires.

Parameters

id | ID of the DataEvent-Hub from which to read data.

data | Pointer to the buffer which should contain the data that was read from the DataEvent--
Hub.

length | The size of the buffer pointed to by data in Bytes. It must be equal or larger than the
data posted to the DataEvent-Hub, otherwise the interaction will fail with RC_FAIL.

PpNbrOfRead- | Pointer to a variable of type L1_UINT32 which will contain the number of Bytes that
Bytes | were actually read from the DataEvent-Hub.

timeout | How long the interaction shall wait, in system ticks, to perform the interaction.

Returns

RC_OK The data could be read.
RC_TO The timeout expired.
RC_FAIL The data could not be read. One cause of this is a too small buffer.

6.24.3.9 static __inline__ L1_ReturnCode L1_UpdateDataEvent_ NW (L1_HublID id, L1_BYTE x data,
L1_UINT32 length) [static]

This interaction posts data to the DataEvent-Hub id. If the DataEvent-Hub previously contained data
already then this will be overwritten, as it has been succeeded by the new data. This interaction always
returns directly.

Parameters

id | ID of the DataEvent-Hub to which to post the data.

data | Pointer to the buffer which contains the data to be posted.

length | Number of bytes that are in the buffer pointed to by data. The maximum number of
bytes that can be posted is LI_PACKET_DATA_SIZE.

Returns

RC_OK The data could be posted.
RC_FAIL Otherwise.

6.25 Data-Queue Hub

Data Structures

e struct _struct_L1_DataQueueElement_
e struct _struct_L1_DataQueueState_

VirtuosoNext-Designer-1.0.0.0

86 CHAPTER 6. MODULE DOCUMENTATION

Typedefs

* typedef struct

_struct_LL1_DataQueueState_ L.1_DataQueue_HubState
* typedef struct

_struct_LL1_DataQueueElement_ L1_DataQueueElement

Functions

e L1_BOOL DataQueueHub_SyncCondition (L1_Hub xHub, L1_Packet *Packet)
¢ void DataQueueHub_Synchronize (L.1_Hub xhub, L1_Packet *packet, L.1_Packet xwaitingPacket)
¢ void DataQueueHub_Update (L1_Hub *Hub, L1_Packet *Packet)

e L1_ReturnCode L1_DataQueue_get (L1_HubID hubID, L1_Packet s«packet, L1_BYTE xbuffer, L1-
_UINT32 bufferSize, L1_UINT32 «xpNbrOfBytesRetrieved, L1_Timeout timeout)

e L1_ReturnCode L1_DataQueue_put (L1_HubID hubID, L1_Packet xpacket, L1_BYTE xbuffer, L1-
_UINT32 length, L1_BOOL urgent, L1_Timeout timeout)

e static __inline__ L.1_BOOL L1_isDataQueueHub (L.1_Hub xpHub)
e static __inline__ L.1_BOOL L1_isDataQueueHubEmpty (L1_Hub *pHub)
e static __inline__ L.1_BOOL L1_isDataQueueHubFull (L1_Hub xpHub)

6.25.1 Detailed Description

The DataQueue-Hub offers buffered data exchange between Tasks.

6.25.2 Visual Designer

ar

Figure 6.4: Application Diagram Icon

6.25.2.1 Properties

The Entity has the following Properties:

* node: The name of the Node to which the Entity is mapped.
* name: Name of the Entity instance.
* nbrOfElements: How many elements can be stored in the data-queue.

¢ elementSize: The size of each element stored in the data-queue.

6.25.3 Typedef Documentation
6.25.3.1 typedef struct _struct_LL1_DataQueueState_ 1.1 _DataQueue_HubState

State of a DataQueue-Hub.

VirtuosoNext-Designer-1.0.0.0

6.25. DATA-QUEUE HUB 87

6.25.3.2 typedef struct _struct_L.1_DataQueueElement_ L1_DataQueueElement

This structure represents an Element in the FIFO-Hub. It buffers the data given to it.

6.25.4 Function Documentation
6.25.4.1 L1_BOOL DataQueueHub_SyncCondition (L1_Hub = Hub, L.1_Packet « Packet)
This function signals if synchronization occurs when receiving put/get packets in a fifo. When receiving

a put packet, returns true when the fifo is not full (more packets can be received). When receiving a get
packet, returns true when the fifo is not empty (there is data to be read from the fifo).

Parameters

Hub | ID of the Fifo Hub.

Packet | Packet used for the synchronization operation.

Returns

L1_TRUE If synchronisation took place.
L1_FALSE If no synchronisation took place.

6.25.4.2 void DataQueueHub_Synchronize (L1_Hub x hub, L1_Packet x packet, L1_Packet
waitingPacket)

This function shall ensure that the data from the Put-Packet gets inserted into the FIFO and that the Get--
Packet gets the oldest set of data that is in the FIFO.

Parameters

hub | Pointer to a hub of type L1_FIFO.

packet | Pointer to the newly arrived L1_Packet.

waitingPacket | Pointer to the L1_Packet which is complementary to the one in the parameter packet.

Precondition

hub NOT NULL
packet NOT NULL
waitingPacket NOT NULL

6.25.4.3 void DataQueueHub _Update (L1_Hub * Hub, L1_Packet x Packet)

This function updates the state of a Fifo Hub, depending on the type of packet received. Put packets increase
the count of the Fifo, data from the packet is copied into the fifo buffer and the data size is updated. Get
packets decrease the count of the Fifo and copies the data from the hub’s buffer to the data field of the
packet.

VirtuosoNext-Designer-1.0.0.0

88 CHAPTER 6. MODULE DOCUMENTATION

Parameters

Hub | ID of the Fifo Hub.

Packet | Packet used for the update operation.

6.25.44 L1_ReturnCode L1 _DataQueue_get (L1_HubID hubID, L1_Packet « packet, L1 _BYTE x buffer,
L1_UINT32 bufferSize, L1_UINT32 « pNbrOfBytesRetrieved, 1.1_Timeout timeout)

Parameters

hubID | The ID of the Data-Queue Hub where to enqueue the the data at.

packet | Pointer to the L1_Packet to use for the interaction.

buffer | Pointer to the memory location where the data retrieved from the Data-Queue Hub shall
be placed.

bufferSize | The number of bytes that can be stored in the buffer, pointed to by the parameter buffer.

PpNbrOfBytes- | Pointer to a variable of type L1_UINT32 where the number of retrieved bytes shall be
Retrieved | stored after the interaction completed successfully. The value shall be less or equal to
the value stored in the parameter bufferSize.

timeout | How long to wait for this interaction to synchronise if the Data-Queue Hub has no
occupied element available. The parameter has the following meanings:

¢ 0: Non waiting (_NW) semantics.

e L1_INFINITE_TIMEOUT: Waiting semantics (_W). The interaction waits until
it synchronised, potentially forever or until the system terminates.

* Any other value: The number of milliseconds to wait for the interaction to syn-
chronise (_WT).

Returns

RC_OK: The interaction was performed successfully, the data has been inserted in the Data-Queue.
RC_TO: The interaction timed out, the data has not been inserted in the Data-Queue
RC_FAIL: The interaction failed, there are multiple reasons for this possible:

* When the timeout parameter is set to O (_NW) and there was no free element available in the
Data-Queue Hub.

¢ The amount of data to be retrieved from the Data-Queue Hub was smaller than the Data-Queue
Hub element size.

* The amount of data to be retrieved from the Data-Queue Hub was larger than the payload size of
the L1_Packet minus one byte (L1_PACKET_DATA_SIZE - 1).

» The parameter buffer was a NULL-Pointer.
* The parameter packet was a NULL-Pointer.
* The parameter pNbrOfBytesRetrieved was a NULL-Pointer.

6.25.45 L1_ReturnCode L1_DataQueue_put (L1_HubID hubID, L.1_Packet x packet, L1_BYTE « buffer,
L1_UINT32 length, L1_BOOL urgent, L.1_Timeout timeout)

VirtuosoNext-Designer-1.0.0.0

6.25. DATA-QUEUE HUB 89

Parameters

hubID

The ID of the Data-Queue Hub where to enqueue the the data at.

packet

Pointer to the L1_Packet to use for the interaction.

buffer

Pointer to the memory location that contains the data to be enqueued.

length

The number of bytes to enqueue at the Data-Queue Hub.

urgent

This indicates whether or not the data is urgent. If set to L1_TRUE the element gets
inserted at the front of the queue, otherwise at the end. Be aware that this flag does not
affect the priority of the L1_Packet in the system.

timeout

How long to wait for this interaction to synchronise if the Data-Queue Hub has no free
element available. The parameter has the following meanings:

¢ 0: Non waiting (_NW) semantics.

e L1_INFINITE_TIMEOUT: Waiting semantics (_W). The interaction waits until
it synchronised, potentially forever or until the system terminates.

* Any other value: The number of milliseconds to wait for the interaction to syn-
chronise (_WT).

Returns

RC_OK: The interaction was performed successfully, the data has been inserted in the Data-Queue.
RC_TO: The interaction timed out, the data has not been inserted in the Data-Queue
RC_FAIL: The interaction failed, there are multiple reasons for this possible:

* When the timeout parameter is set to O (_NW) and there was no free element available in the
Data-Queue Hub.

* The amount of data to be inserted in the Data-Queue Hub was larger than the Data-Queue Hub
element size.

* The amount of data to be inserted in the Data-Queue Hub was larger than the payload size of the
L1_Packet minus one byte (L1_PACKET_DATA_SIZE - 1).

* The parameter buffer was a NULL-Pointer.

» The parameter packet was a NULL-Pointer.

6.25.4.6 static __inline__L1_BOOL L1_isDataQueueHub (L1_Hub x pHub) [static]

Checks whether or not the given data structure represents a FIFO-Hub.

Parameters

pHub

Pointer to the data structure, of type L1_Hub, which should be checked whether or not
it represents a FIFO-Hub.

Returns

L1_TRUE If the data structure represents a FIFO-Hub.
L1_FALSE Otherwise.

VirtuosoNext-Designer-1.0.0.0

90 CHAPTER 6. MODULE DOCUMENTATION

6.25.4.7 static __inline__L1_BOOL L1_isDataQueueHubEmpty (L1_Hub x pHub) [static]

Determines whether the FIFO-Hub identified by pHub is empty.

Parameters

‘ pHub | Pointer to the Hub data structure of a FIFO-Hub.

Returns

L1_TRUE If the FIFO is empty.
L1_FALSE If the FIFO is not empty.

6.25.4.8 static __inline__L1_BOOL L1_isDataQueueHubFull (L1_Hub x pHub) [static]

Determines whether the FIFO-Hub identified by pHub is full.

Parameters

\ pHub \ Pointer to the Hub data structure of a FIFO-Hub.

Returns

L1_TRUE If the FIFO is full.
L1_FALSE If the FIFO is not full.

Remarks

SPC FIFO-nbrOfElement upper bound

6.26 Event Hub

Data Structures

e struct _struct_LL1_EventState_

Macros

e #define L1_Event_State(h) ((L1_Event_HubStatex)(h)->HubState)

Typedefs

* typedef struct
_struct_L1_EventState_ L1_Event_HubState

VirtuosoNext-Designer-1.0.0.0

6.26. EVENT HUB

91

Functions

¢ L1_BOOL EventSyncCondition (L1_Hub *Hub, L1_Packet xPacket)
* void EventUpdate (L1_Hub «xHub, L1_Packet *Packet)

e static__inline__ L1_ReturnCode L1_Drv_Isr_RaiseEvent_NW (L1_HubID event, L.1_Packet «packet)

e static __inline__ L.L1_BOOL L1_isEventHub (L1_Hub *pHub)

e static __inline__ L.1_BOOL L1_isHubEventSet (L1_Hub xpHub)

e static __inline_ L1_ReturnCode L1_RaiseEvent_NW (L1_HubID HubID)

e static __inline__ L1_ReturnCode L1_RaiseEvent_W (L1_HubID HubID)

e static __inline_ L1_ReturnCode L1_RaiseEvent_ WT (L1_HubID HubID, L1_Timeout timeout)
e static __inline__ L.1_ReturnCode L.1_TestEvent_A (L1_HubID HubID, L1_Packet xpacket)

e static __inline_ L1_ReturnCode L1_TestEvent. NW (L1_HubID HubID)

e static __inline__ L1_ReturnCode L1_TestEvent_W (L1_HubID HubID)

e static __inline_ L1_ReturnCode L1_TestEvent. WT (L1_HubID HubID, L1_Timeout timeout)

6.26.1 Detailed Description

An Event-Hub synchronises two Tasks based on a boolean condition.

6.26.2 Visual Designer

>

Figure 6.5: Application Diagram Icon

6.26.2.1 Properties
The Entity has the following Properties:

* node: The name of the Node to which the Entity is mapped.

* name: Name of the Entity instance.

6.26.3 Example

This example illustrates the use of the Event Hub. Task1 periodically raises the Event Eventl on which the

Task?2 is waiting. When the Event is raised the waiting Task2 will receive a RC_OK return value.

The program uses the L1_TestEvent_W and L1_RaiseEvent_W waiting kernel services.

6.26.3.1 Entities

Task1: Task1EntryPoint, shown in section Source Code of Task 1 EntryPoint

Task2: Task2EntryPoint, shown in section Source Code of Task2EntryPoint

* Eventl: The Event Hub used to synchronise between Task1 and Task2.

StdioHostServer1: Stdio Host Server used to print messages onto the screen.

VirtuosoNext-Designer-1.0.0.0

92 CHAPTER 6. MODULE DOCUMENTATION

 StdioHostServer1Res: Resource Lock used to prevent disruptions while printing messages onto the
console using StdioHostServerl.

6.26.4 Source Code of Task1EntryPoint

#include <L1_api.h>
#include <Ll_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void TasklEntryPoint (L1_TaskArguments Arguments)
{
L1_INT32 EventCounter = 0;
while (1)
{
// Here Eventl gets raised.
1f(RC_OK == L1_RaiseEvent_W (Eventl))
{
L1_LockResource_W (StdioHostServerlRes);
Shs_putString W(StdioHostServerl, "Taskl raised the Eventl N \n");
Shs_putInt_W(StdioHostServerl, EventCounter++, ’'d’);
Shs_putChar_W(StdioHostServerl, ’\n’);
L1l _UnlockResource_ NW (StdioHostServerlRes);

6.26.5 Source Code of Task2EntryPoint

#include <L1l_api.h>
#include <L1l_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void Task2EntryPoint (L1_TaskArguments Arguments)
{
L1_INT32 EventCounter = 0;

while (1)
{
// Here Eventl gets tested.
1T (RC_OK == L1_TestEvent_W(Eventl))
{
L1 _LockResource_W(StdioHostServerlRes);
Shs_putString W(StdioHostServerl, "Task2 tested Eventl N ");
Shs_putInt_W(StdioHostServerl, EventCounter++, ’'d’);
Shs_putString W(StdioHostServerl, " - synchronization is done\n");
L1l _UnlockResource_NW (StdioHostServerlRes);

VirtuosoNext-Designer-1.0.0.0

6.26. EVENT HUB 93

Remarks

REQ Event
SPC Event

6.26.6 Macro Definition Documentation
6.26.6.1 #define L1_Event_State(h) ((L1_Event_HubStatex)(h)->HubState)

This macro casts the HubState void pointer to a pointer to L1_Event_HubState.

Parameters

\ h | Pointer to a type of type L1_EVENT.

6.26.7 Typedef Documentation
6.26.7.1 typedef struct _struct_L1_EventState_ L.1_Event_HubState
The state of an Event-Hub.

Remarks

SPC Event state variable

6.26.8 Function Documentation

6.26.8.1 L1_BOOL EventSyncCondition (L1_Hub = Hub, L.1_Packet « Packet)

This function evaluates if the update function should be executed, depending on the type of packet received.
For send packets, the event sync condition is true if the event state is not set. If the event is set, the update

condition is false. For receive packets, the event sync condition is true if the event state is set. If the event
is not set, the update condition is false.

Parameters

Hub | Event hub that is tested for synchronization.

Packet | Send or receive packet received by the hub.

Returns

L1_BOOL
¢ L1_TRUE Update condition is true (update function should be called).
* L1_FALSE Update condition is false (update function should not be called).

Precondition
* Hubis of type L1_EVENT.

* Empty waiting list, as complimentary packets are already accounted for.

VirtuosoNext-Designer-1.0.0.0

9 CHAPTER 6. MODULE DOCUMENTATION

6.26.8.2 void EventUpdate (L1_Hub * Hub, L.1_Packet « Packet)

This function updates the state of an Event Hub, depending on the type of packet received. Send packets
raise the event. Receive packets test the event.

Parameters

Hub | Event hub that is updated.

Packet | Send or receive packet received by the hub.

Precondition
* Hub is of type L1_EVENT.

6.26.8.3 static __inline__ L1_ReturnCode L1_Drv_Isr_RaiseEvent NW (L1_HubID event, L.1_Packet x
packet) [static]

This interaction tries to raise an event from the ISR context. This function returns directly, like an Asyn-
chronous Interaction, but the packet will never be returned to the ISR.

Parameters:

Parameters

event | ID of the Event-Hub that should be raised.

packet | Pointer to the L1_Packet that will be used to represent the interaction. This L1_Packet
must have been once initialised using the function L1_Drv_Isr_initialisePacket().

Returns

RC_OK The packet that raises the Event could be inserted into the Kernel Input Port.
RC_FAIL The packet that raises the Event could not be inserted into the Kernel Input Port.

Warning

Must not be used with Event-Hubs located at another Node.
Only to be used within an ISR, not within a Task!

See Also

L1 _Drv_Isr_initialisePacket

Remarks

SPC Packets from an ISR

VirtuosoNext-Designer-1.0.0.0

6.26. EVENT HUB 95

6.26.8.4 static __inline__L1_BOOL L1_isEventHub (L1_Hub x pHub) [static]

Checks whether or not the given data structure represents a Event-Hub.

Parameters

pHub | Pointer to the data structure, of type L1_Hub, which should be checked whether or not
it represents a Event-Hub.

Returns

L1_TRUE if the data structure represents a Event-Hub.
L1_FALSE otherwise.

6.26.8.5 static __inline__ L1 _BOOL L1_isHubEventSet (L1_Hub x pHub) [static]

This function determines whether or not the Event-Hub identified by the argument pHub is set.

Parameters

‘ pHub ‘ Pointer to a variable of type L1_Hub of an Event-Hub.

Warning

pHub must not be a NULL-Pointer, this function does not check this.

Returns

L1_TRUE if the Event-Hub is set.
L1_FALSE if the Event-Hub is not set.

6.26.8.6 static __inline__ L1_ReturnCode L1_RaiseEvent NW (L1_HubID HubID) [static]

This service raises an Event from False to True. This service returns immediately independent of whether
or not it could raise the event.

Parameters:

Parameters

‘ HubID ‘ is of type L1_HublID, identifies the Event, i.e. Hub, that the calling Task wants to raise.

Returns

L1_ReturnCode:
¢ RC_OK service successful (the Event has been raised)
¢ RC_FAIL service failed (the Event has not been raised)

Precondition

» Packet is the preallocated Packet
e Hub is of Event type

Postcondition

* Header fields of preallocated Packet filled in

VirtuosoNext-Designer-1.0.0.0

96 CHAPTER 6. MODULE DOCUMENTATION

6.26.8.7 static __inline__ L1_ReturnCode L1_RaiseEvent W (L1_HubID HubID) [static]

This service raises an Event from False to True. If the Event is already set, wait.

Parameters:

Parameters

‘ HubID ‘ is of type L1_HublID, identifies the Event, i.e. Hub, that the calling Task wants to raise.

Returns
L1_ReturnCode:

¢ RC_OK service successful (the Event has been raised)
e RC_FAIL service failed (the Event has not been raised)

Precondition

» Packet is the preallocated Packet
* Hub is of Event type

Postcondition

» Header fields of preallocated Packet filled in

6.26.8.8 static __inline__ L1_ReturnCode L1_RaiseEvent WT (L1_HubID HubID, 1.1_Timeout timeout)
[static]

This service raises an Event from False to True. This call waits until either the event could be raised or the
timeout expired.

Parameters:

Parameters

HubID | of type L1_HublID, identifies the Event, i.e. Hub, that the calling Task wants to raise.

timeout | of type L1_Timeout, the number of system ticks the call should wait for synchronisa-
tion.

Returns
L1_ReturnCode:

¢ RC_OK service successful (the Event has been raised)
¢ RC_FAIL service failed (the Event has not been raised)

¢ RC_TO service timed out.

Precondition

» Packet is the preallocated Packet
* Hub is of Event type

Postcondition

* Header fields of preallocated Packet filled in

VirtuosoNext-Designer-1.0.0.0

6.26. EVENT HUB 97

6.26.8.9 static __inline__ L1_ReturnCode L1_TestEvent_A (L1_HubID HubID, 1.1_Packet « packet)
[static]

Request to test an Event-Hub without being put in the waiting state. The completion is deferred until a
corresponding L.1_WaitForPacket call happens.

Parameters

HublID | is of type L1_HubID and identifies the Event, that the calling Task wants to test.

packet | Pointer to the L1_Packet that will be used for this Asynchronous-Interaction. There are
two ways of acquiring such an L1_Packet:

* Allocate an L1_Packet in your Task, and then initialise it using the function L1_-
initialiseAsyncPacket().

e Allocate an L1_Packet from a local (i.e. same Node) Packet Pool-Hub, using
one of the following interactions: L1_AllocatePacket_W(), L1_AllocatePacket_-
NW(), and L1_AllocatePacket_ WT().

Returns

L1_ReturnCode, the following return values are possible:
¢ RC_OK service successful
¢ RC_FAIL service failed

Precondition

» Packet is a preallocated L1_Packet, initialised using L1_initialiseAsyncPacket().

Postcondition
* Header fields of preallocated Packet filled in
* Data of Put Packet will have been filled in

Warning

This Interaction only works locally (Task and Hub on the same Node), i.e. not distributed (Task and
Hub on different Nodes).

See Also

L1_initialiseAsyncPacket
L1_AllocatePacket W
L1_AllocatePacket NW
L1_AllocatePacket WT

Remarks

SPC Runtime parameter check

VirtuosoNext-Designer-1.0.0.0

98 CHAPTER 6. MODULE DOCUMENTATION

6.26.8.10 static __inline__ L1_ReturnCode L1_TestEvent NW (L1_HubID HubID) [static]

This service tests an Event. Returns immediately.

Parameters

‘ HubID ‘ is of type L1_HubID and identifies the Event, that the calling Task wants to test.

Returns
L1_ReturnCode, the following return values are possible:
¢ RC_OK service successful (there was a set Event)

¢ RC_FAIL service failed (there was no set Event)

Precondition

» Packet is the preallocated Packet

Postcondition

* Header fields of preallocated Packet filled in

6.26.8.11 static __inline__ L1_ReturnCode L1_TestEvent_ W (L1_HubID HubID) [static]

This service tests an Event. This call waits until the Event has been signalled.

Parameters

\ HubID \ is of type L1_HubID and identifies the Event, that the calling Task wants to test.

Returns
L1_ReturnCode, the following return values are possible:
¢ RC_OK service successful (there was a set Event)

¢ RC_FAIL service failed (there was no set Event)

Precondition

» Packet is the preallocated Packet

Postcondition

* Header fields of preallocated Packet filled in

VirtuosoNext-Designer-1.0.0.0

6.27. FIFO HUB 929

6.26.8.12 static __inline__ L1_ReturnCode L1 _TestEvent WT (L1_HubID HubID, L.1_Timeout timeout)
[static]

This service tests an Event. This call waits until either the Event has been signalled, or the timeout expired.

Parameters

HublID | is of type L1_HubID and identifies the Event, that the calling Task wants to test.
timeout | of type L1_Timeout, the number of system ticks the call should wait for synchronisa-
tion.

Returns

L1_ReturnCode, the following return values are possible:
¢ RC_OK service successful (there was a set Event).
e RC_FAIL service failed (there was no set Event).
* RC_TO timeout expired.

Precondition

* Packet is the preallocated Packet

Postcondition

* Header fields of preallocated Packet filled in

6.27 FIFO Hub

Data Structures

e struct _struct_L1_FifoState_

Typedefs

* typedef struct
_struct_L1_FifoState_ L.1_Fifo_HubState

Functions

* void Fifo_loctl (L1_Hub «Hub, L1_Packet *Packet, L1_BYTE ioctl_type)

e L1_BOOL FifoSyncCondition (L1_Hub *Hub, L1_Packet «Packet)

¢ void FifoSynchronize (L1_Hub xhub, L1_Packet spacket, L.1_Packet xwaitingPacket)

* void FifoUpdate (L1_Hub «Hub, L1_Packet *Packet)

e static __inline__ L.1_ReturnCode L.1_DequeueFifo_ NW (L.1_HubID HubID)

e static __inline__ L1_ReturnCode L.1_DequeueFifo_W (L.1_HubID HubID)

e static __inline__ L.1_ReturnCode L.1_DequeueFifo_WT (L1_HubID HubID, L1_Timeout timeout)

e static__inline__ L1_ReturnCode L1_Drv_Isr_EnqueueFifo_NW (L1_HubID fifo, L.1_Packet xpacket)
e static __inline__ L.1_ReturnCode L.1_EnqueueFifo_NW (L1_HubID HubID)

VirtuosoNext-Designer-1.0.0.0

100

CHAPTER 6. MODULE DOCUMENTATION

static __inline__ L1_ReturnCode L1_EnqueueFifo_W (L1_HubID HubID)
static __inline__ L1_ReturnCode L1_EnqueueFifo_WT (L1_HubID HubID, L1_Timeout timeout)

static __inline__ L1_ReturnCode L1_GetDataFromFifo_ NW (L1_HubID hubID, L1_BYTE x*data-
Buffer, L1_UINT32 bufferSize, L1_UINT32 xbytesReceived)

static __inline__ L1_ReturnCode L1_GetDataFromFifo_W (L1_HubID hubID, L1_BYTE xdata-
Buffer, L1_UINT32 bufferSize, L1_UINT32 xbytesReceived)

static __inline__ L1_ReturnCode L1_GetDataFromFifo_ WT (L1_HubID hubID, L1_BYTE xdata-
Buffer, L1_UINT32 bufferSize, L1_UINT32 xbytesReceived, L1_Timeout timeout)

static __inline__ L1_BOOL L1_isFifoHub (L1_Hub xpHub)
static __inline__ L1_BOOL L1_isHubFifoEmpty (L1_Hub xpHub)
static __inline__ L.1_BOOL L1_isHubFifoFull (L1_Hub xpHub)

static __inline_ LL1_ReturnCode L1_PutDataToFifo_ NW (L1_HubID hubID, L1_BYTE xdata, L1-
_UINT32 size)

static __inline_ L.1_ReturnCode L1_PutDataToFifo_ W (L1_HubID hubID, L1_BYTE x*data, LL1_-
UINT32 size)

static __inline_ L1_ReturnCode L1_PutDataToFifo_ WT (L1_HubID hubID, L1_BYTE x*data, L1-
_UINT32 size, L1_Timeout timeout)

6.27.1 Detailed Description

The FIFO-Hub offers buffered data exchange between Tasks.

6.27.2 Visual Designer

T

Figure 6.6: Application Diagram Icon

6.27.2.1 Properties

The Entity has the following Properties:

* node: The name of the Node to which the Entity is mapped.
* name: Name of the Entity instance.

* size: How many buffers the FIFO provides.

6.27.3 Example

This example illustrates the use of the FIFO Hub. Taskl puts a character into a packet and sends this to
FIFO1. Task2 initially waits for 2 seconds for the FIFO to fill up and then retrieves the packets from FIFO1
and displays their content.

VirtuosoNext-Designer-1.0.0.0

6.27. FIFO HUB 101

6.27.3.1 Entities

FIFO1: The FIFO bugger between Task1 and Task?2, it can store 5 elements.

Task1: Task1EntryPoint, shown in section Source Code of Task 1 EntryPoint
* Taskl: Task2EntryPoint, shown in section Source Code of Task2EntryPoint
* StdioHostServerl: A Stdio Host Server component which provides access to the console.

¢ StdioHostServer1Res: A Resource Hub to ensure that a second task does not interfere with console
access.

6.27.4 Source Code of Task1EntryPoint

void TasklEntryPoint (L1_TaskArguments Arguments)
{
L1_BYTE ch;
L1_Packet xPacket = L1_CurrentTaskCR->RequestPacket;

for (L1_UINT32 i=0; i<5; i++)
{
for(ch = "a’; ch < "j7; ch++)
{
Packet->DataSize = sizeof (L1_BYTE);
Packet->Data[0] = ch;

1f(RC_OK == Ll1_EnqueueFifo_W(FIFO1l))

{
L1l_LockResource_W(StdioHostServerlRes);
Shs_putString W(StdioHostServerl,

"The Taskl put into the FIFOl the symbol
Shs_putChar_W(StdioHostServerl, ch);
Shs_putChar_W(StdioHostServerl, ’‘\n’);
L1l_UnlockResource_NW (StdioHostServerlRes);

lelse
{
Shs_putString_W(StdioHostServerl,

"A symbol is not put by Taskl into FIFOl\n");

6.27.5 Source Code of Task2EntryPoint

#include <L1l_api.h>
#include "L1_node_config.h"
#include <StdioHostService/StdioHostClient.h>

volid Task2EntryPoint (L1_TaskArguments Arguments)
{
L1_Packet xPacket = L1_CurrentTaskCR->RequestPacket;

VirtuosoNext-Designer-1.0.0.0

102 CHAPTER 6. MODULE DOCUMENTATION

L1_BYTE i, ch;

while (1)
{
L1_LockResource_W(StdioHostServerlRes) ;
Shs_putString W (StdioHostServerl, "Task2 sleeps for 2 s waiting for the FIFO
L1l_UnlockResource_NW (StdioHostServerlRes);
L1 _WaitTask_WT (2000);

for(i = "’a’; i < ’"3"; 1i++)
{
1f(RC_OK == L1_DequeueFifo_W(FIFOL1l))
{
ch = Packet->Datal[0];
L1_LockResource_W (StdioHostServerlRes) ;
Shs_putString_W(StdioHostServerl,

"The Task2 read from the FIFOl the symbol ");
Shs_putChar_W(StdioHostServerl, ch);
Shs_putChar_W(StdioHostServerl, ’'\n’);

L1_UnlockResource_NW (StdioHostServerlRes);
lelse
{
L1l_LockResource_W(StdioHostServerlRes);
Shs_putString W(StdioHostServerl,

"A symbol is not read by Task2 from FIFOl\n");

L1_UnlockResource_NW (StdioHostServerlRes);

Remarks

REQ FIFO
SPC FIFO

6.27.6 Typedef Documentation
6.27.6.1 typedef struct _struct_L1_FifoState_ L.1_Fifo_HubState
State of a FIFO-Hub.

Remarks

SPC FIFO state variables

6.27.7 Function Documentation
6.27.7.1 void Fifo_loctl (L.1_Hub x Hub, 1.1_Packet « Packet, L1 _BYTE ioctl_type)

This function shall handle the initialisation and the clearing of the FIFO Hub.

VirtuosoNext-Designer-1.0.0.0

6.27. FIFO HUB 103

Parameters

Hub | Pointer to a hub of type L1_FIFO.

Packet | Pointer to the L1_Packet with the request.

ioctl_type | The type of IOCTL Operation requested. It may have only the following values:
e L1_IOCTL_HUB_OPEN Brings the Hub to it’s default state.

6.27.7.2 L1_BOOL FifoSyncCondition (L1_Hub x Hub, L.1_Packet * Packet)
This function signals if synchronization occurs when receiving put/get packets in a fifo. When receiving

a put packet, returns true when the fifo is not full (more packets can be received). When receiving a get
packet, returns true when the fifo is not empty (there is data to be read from the fifo).

Parameters

Hub | ID of the Fifo Hub.

Packet | Packet used for the synchronization operation.

Returns

L1_TRUE If synchronisation took place.
L1_FALSE If no synchronisation took place.

6.27.7.3 void FifoSynchronize (L1_Hub x hub, L1_Packet * packet, L.1_Packet = waitingPacket)

This function shall ensure that the data from the Put-Packet gets inserted into the FIFO and that the Get--
Packet gets the oldest set of data that is in the FIFO.

Parameters

hub | Pointer to a hub of type L1_FIFO.

packet | Pointer to the newly arrived L1_Packet.

waitingPacket | Pointer to the L1_Packet which is complementary to the one in the parameter packet.

Precondition

hub NOT NULL
packet NOT NULL
waitingPacket NOT NULL

6.27.7.4 void FifoUpdate (L1_Hub « Hub, L.1_Packet = Packet)

This function updates the state of a Fifo Hub, depending on the type of packet received. Put packets increase
the count of the Fifo, data from the packet is copied into the fifo buffer and the data size is updated. Get
packets decrease the count of the Fifo and copies the data from the hub’s buffer to the data field of the
packet.

VirtuosoNext-Designer-1.0.0.0

104 CHAPTER 6. MODULE DOCUMENTATION

Parameters

Hub | ID of the Fifo Hub.

Packet | Packet used for the update operation.

6.27.7.5 static __inline__ .1_ReturnCode L1_DequeueFifo NW (L1_HubID HubID) [static]

Retrieves data from a FIFO, the data is stored in the payload of the task’s Request-Packet.

This call returns immediately, even if there is no packet available in the FIFO.

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters

\ HublID | the L1_HubID which identifies the FIFO-Hub.

Returns

L1_ReturnCode
¢ RC_OK service successful (the data was inserted in the FIFO)
¢ RC_FAIL service failed (the data was not inserted in the FIFO)

Precondition

¢ None

Postcondition

¢ Calling task ready

6.27.7.6 static __inline__ L1_ReturnCode L1_DequeueFifo_ W (L1_HubID HubID) [static]

Retrieves data from a FIFO, the data is stored in the payload of the task’s Request-Packet. This call waits
until there is data in the FIFO to be retrieved.

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters

‘ HubID | the L1_HubID which identifies the FIFO-Hub.

VirtuosoNext-Designer-1.0.0.0

6.27. FIFO HUB 105

Returns
L1_ReturnCode
¢ RC_OK service successful (the data was inserted in the FIFO)
e RC_FAIL service failed (the data was not inserted in the FIFO)

Precondition

¢ None

Postcondition

* Calling task ready

6.27.7.7 static __inline__ L1_ReturnCode L1_DequeueFifo WT (L1_HubID HubID, 1.1_Timeout timeout)
[static]

Retrieves data from a FIFO, the data is stored in the payload of the task’s Request-Packet. Waits until either
data becomes available or the timeout expired, depending on what happens first.

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters

HubID | the L1_HubID which identifies the FIFO-Hub to use.

timeout | the number of system ticks the call should wait for a packet to become available.

Returns
L1_ReturnCode
¢ RC_OK service successful (the data was inserted in the FIFO)
e RC_FAIL service failed (the data was not inserted in the FIFO)

* RC_TO the timeout expired without a package being available.

Precondition

¢ None

Postcondition

¢ Calling task ready

VirtuosoNext-Designer-1.0.0.0

106 CHAPTER 6. MODULE DOCUMENTATION

6.27.7.8 static __inline__ L1_ReturnCode L1_Drv_Isr_EnqueueFifo_ NW (L1_HublID fifo, L1_Packet =
packet) [static]

Enqueues a fifo. This function returns directly, like an Asynchronous Interaction, but the packet will never
be returned to the ISR.

Parameters:

Parameters

fifo | is the L1_HubID which identifies the Fifo, that the calling ISR wants to enqueue.

packet | Pointer to the L1_Packet that will be used to represent the interaction. This L1_Packet
must have been once initialized using the function L1_Drv_Isr_initialisePacket().

Returns

RC_OK The packet that enqueues the fifo could be inserted into the Kernel Input Port.
RC_FAIL The packet that enqueues the fifo could not be inserted into the Kernel Input Port.

Warning

Must not be used with Fifo-Hubs located at another Node.
Only to be used within an ISR, not within a Task!

See Also

L1 Drv_Isr_initialisePacket

Remarks

SPC Packets from an ISR

6.27.7.9 static __inline__ L1_ReturnCode L1_EnqueueFifo_ NW (L1_HubID HubID) [static]

Inserts the payload-data of a task’s Request-Packet into a FIFO. This call returns immediately, even if the
packet could not be enqueued in the FIFO.

Parameters

\ HubID | the L1_HubID which identifies the FIFO-Hub.

Returns

L1_ReturnCode
¢ RC_OK service successful (the data was inserted in the FIFO)
¢ RC_FAIL service failed (the data was not inserted in the FIFO)

Precondition

¢ None

Postcondition

¢ Calling task ready

VirtuosoNext-Designer-1.0.0.0

6.27. FIFO HUB 107

6.27.7.10 static __inline__ L1_ReturnCode L1_EnqueueFifo_ W (L1_HubID HubID) [static]

Inserts the payload-data of a task’s Request-Packet into a FIFO. This service waits until it could insert the
data into the specified FIFO.

Parameters

\ HubID | identifies the FIFO-Hub to use.

Returns

L1_ReturnCode
* RC_OK service successful (the data was inserted in the FIFO)
¢ RC_FAIL service failed (the data was not inserted in the FIFO)

Precondition

¢ None

Postcondition

¢ Calling task ready

6.27.7.11 static __inline__ L1_ReturnCode L1_EnqueueFifo_ WT (L1_HubID HubID, 1.1_Timeout timeout
) [static]

Inserts the payload-data of a task’s Request-Packet into a FIFO. This service tries to enqueue a packet into
the FIFO until the the timeout expires.

Parameters

HubID | identifies the FIFO-Hub to use.

timeout | the number of system ticks the call should wait while trying to enqueue the packet.

Returns

L1 ReturnCode
¢ RC_OK service successful (the data was inserted in the FIFO)
¢ RC_FAIL service failed (the data was not inserted in the FIFO)
¢ RC_TO the timeout expired.

Precondition

¢ None

Postcondition

* Calling task ready

VirtuosoNext-Designer-1.0.0.0

108 CHAPTER 6. MODULE DOCUMENTATION

6.27.7.12 static __inline__ L1_ReturnCode L1_GetDataFromFifo_NW (L1_HubID hubID, L1_BYTE x
dataBuffer, L1_UINT32 bufferSize, L1_UINT32 x« bytesReceived) [static]

Receives data from a Port-Hub.

Parameters

hubID | 1ID of the Hub to send data to.

dataBuffer | This is the pointer to the buffer where to store the data received from the Hub.

bufferSize | This is the size of the dataBuffer in L1_BYTE. This does not indicate that the interac-
tion will receive so much data, it is just an indication of the maximum number of bytes
the function can store safely in the dataBuffer. The real number of received bytes is
stored, upon return in the parameter bytesReceived.

bytesReceived | Pointer to an L1_UINT32 which will contain the number of bytes that were received
from the Hub after the interaction was performed successfully. This parameter may be
set to NULL to indicate that no interest in this value exists. However, this is generally
not advised.

Returns

L1_ReturnCode:
¢ RC_OK: The interaction was successful;

¢ RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail: — Not
enough space in the dataBuffer. In this case the data is not lost but is still present in the field Data
of the used L.1_Packet. — dataBuffer is NULL — packet is NULL — General failure of the system
causing the interaction with the Hub to fail. — The FIFO-Hub was empty, hence there is no data
that could be retrieved.

6.27.7.13 static __inline__ L1_ReturnCode L1_GetDataFromFifo_W (L1_HubID hubID, L1_BYTE «
dataBuffer, L1_UINT32 bufferSize, L1_UINT32 « bytesReceived) [static]

Receives data from a Port-Hub.

Parameters

hubID | 1ID of the Hub to send data to.

dataBuffer | This is the pointer to the buffer where to store the data received from the Hub.

bufferSize | This is the size of the dataBuffer in L1_BYTE. This does not indicate that the interac-
tion will receive so much data, it is just an indication of the maximum number of bytes
the function can store safely in the dataBuffer. The real number of received bytes is
stored, upon return in the parameter bytesReceived.

bytesReceived | Pointer to an L1_UINT32 which will contain the number of bytes that were received
from the Hub after the interaction was performed successfully. This parameter may be
set to NULL to indicate that no interest in this value exists. However, this is generally
not advised.

Returns

L1_ReturnCode:
¢ RC_OK: The interaction was successful;

¢ RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail: — Not
enough space in the dataBuffer. In this case the data is not lost but is still present in the field Data
of the used L1_Packet. — dataBuffer is NULL — packet is NULL — General failure of the system
causing the interaction with the Hub to fail.

VirtuosoNext-Designer-1.0.0.0

6.27. FIFO HUB 109

6.27.7.14 static __inline__ L1_ReturnCode L1_GetDataFromFifo_WT (L1_HubID hubiD, L1_BYTE x
dataBuffer, L1_UINT32 bufferSize, L1_UINT32 « bytesReceived, 1.1_Timeout timeout)
[static]

Receives data from a Port-Hub.

Parameters

hubID | ID of the Hub to send data to.

dataBuffer | This is the pointer to the buffer where to store the data received from the Hub.

bufferSize | This is the size of the dataBuffer in L1_BYTE. This does not indicate that the interac-
tion will receive so much data, it is just an indication of the maximum number of bytes
the function can store safely in the dataBuffer. The real number of received bytes is
stored, upon return in the parameter bytesReceived.

bytesReceived | Pointer to an L1_UINT32 which will contain the number of bytes that were received
from the Hub after the interaction was performed successfully. This parameter may be
set to NULL to indicate that no interest in this value exists. However, this is generally
not advised.

timeout | The timeout to use for the interaction with the Hub.

Returns
L1_ReturnCode:
¢ RC_OK: The interaction was successful;

¢ RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail: — Not
enough space in the dataBuffer. In this case the data is not lost but is still present in the field Data
of the used L1_Packet. — dataBuffer is NULL — packet is NULL — General failure of the system
causing the interaction with the Hub to fail.

¢ RC_TO: The timeout of the interaction expired.

6.27.7.15 static __inline__ L1_BOOL L1 _isFifoHub (L1_Hub % pHub) [static]

Checks whether or not the given data structure represents a FIFO-Hub.

Parameters

pHub | Pointer to the data structure, of type L1_Hub, which should be checked whether or not
it represents a FIFO-Hub.

Returns

L1_TRUE If the data structure represents a FIFO-Hub.
L1_FALSE Otherwise.

6.27.7.16 static __inline__ L1 _BOOL L1_isHubFifoEmpty (L1_Hub % pHub) [static]

Determines whether the FIFO-Hub identified by pHub is empty.

Parameters

VirtuosoNext-Designer-1.0.0.0

110 CHAPTER 6. MODULE DOCUMENTATION

\ pHub | Pointer to the Hub data structure of a FIFO-Hub. \

Returns
L1_TRUE If the FIFO is empty.

L1_FALSE If the FIFO is not empty.
6.27.7.17 static __inline__ L1_BOOL L1_isHubFifoFull (L1_Hub x pHub) [static]

Determines whether the FIFO-Hub identified by pHub is full.

Parameters
\ pHub \ Pointer to the Hub data structure of a FIFO-Hub.

Returns

L1_TRUE If the FIFO is full.
L1_FALSE If the FIFO is not full.

Remarks

SPC FIFO-Size upper bound

6.27.7.18 static __inline__ L1_ReturnCode L1_PutDataToFifo_NW (L1_HubID hubID, L1_BYTE « data,
L1_UINT32 size) [static]

This function performs a data transfer to a FIFO-Hub. It copies the data stored in the buffer indicated by
data into the data part of an L1_Packet and then sends this packet to the Hub.

Parameters

hubID | ID of the Hub to send data to.

data | pointer to a buffer of type L1_BYTE which contains the data that should be sent to the
Hub.
size | size of the buffer pointed to by data. This must not be larger than L1_PACKET_SIZE,
otherwise the interaction will return RC_FAIL.

Returns
L1_ReturnCode:

¢ RC_OK: The interaction was successful;

e RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail; — The
buffer data does not fit in the data part of the L1_Packet (L1_PACKET_DATA_SIZE). — data-
Buffer is NULL — packet is NULL — General failure of the system causing the interaction with
the Hub to fail. — There was no space available in the FIFO-Hub, hence the data could not be
enqueued.

Warning

Only use this functions to interact with Port- or Fifo-Hubs. Interacting with other types of Hubs may
have undesired effects.

VirtuosoNext-Designer-1.0.0.0

6.27. FIFO HUB 111

6.27.7.19 static __inline__ L1_ReturnCode L1_PutDataToFifo_ W (L1_HublD hubID, L1_BYTE x data,
L1 UINT32 size) [static]

This function performs a data transfer to a FIFO-Hub. It copies the data stored in the buffer indicated by
data into the data part of an L1_Packet and then sends this packet to the Hub.

Parameters

hubID | ID of the Hub to send data to.

data | pointer to a buffer of type L1_BYTE which contains the data that should be sent to the
Hub.

size | size of the buffer pointed to by data. This must not be larger than L1_PACKET_SIZE,
otherwise the interaction will return RC_FAIL.

Returns
L1_ReturnCode:

¢ RC_OK: The interaction was successful;

e RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail; — The
buffer data does not fit in the data part of the L1_Packet (L1_PACKET_DATA_SIZE). — data-
Buffer is NULL — packet is NULL — General failure of the system causing the interaction with
the Hub to fail.

Warning

Only use this functions to interact with Port- or Fifo-Hubs. Interacting with other types of Hubs may
have undesired effects.

6.27.7.20 static __inline__ L1_ReturnCode L1_PutDataToFifo_WT (L1_HubID hubID, L1 _BYTE * data,
L1_UINT32 size, L1_Timeout timeout) [static]

This function performs a data transfer to a FIFO-Hub. It copies the data stored in the buffer indicated by
data into the data part of an L1_Packet and then sends this packet to the Hub.

Parameters

hubID | ID of the Hub to send data to.

data | pointer to a buffer of type L1_BYTE which contains the data that should be sent to the
Hub.

size | size of the buffer pointed to by data. This must not be larger than L1_PACKET_SIZE,
otherwise the interaction will return RC_FAIL.

timeout | The timeout in ticks for the interaction.

Returns

L1_ReturnCode:
¢ RC_OK: The interaction was successful;

¢ RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail; — The
buffer data does not fit in the data part of the L1_Packet (L1_PACKET_DATA_SIZE). — data-
Buffer is NULL — packet is NULL — General failure of the system causing the interaction with
the Hub to fail.

* RC_TO: The timeout of the interaction expired.

VirtuosoNext-Designer-1.0.0.0

112 CHAPTER 6. MODULE DOCUMENTATION

Warning

Only use this functions to interact with Port- or Fifo-Hubs. Interacting with other types of Hubs may
have undesired effects.

6.28 Memory Pool Hub

Data Structures

e struct L1_MemoryPool_HubState

Macros

¢ #define L1_isMemoryPoolHub(h) ((h)->HubType == L1_MEMORYPOOL)
* #define L1_MemoryPool_State(h) ((L1_MemoryPool_HubStatex)(h)->HubState)

Functions

e L1_ReturnCode L1_AllocateMemoryBlock (L1_HubID HubID, L1_BYTE x*Memory, L1_UIN-
T16 Size, L1_Timeout Timeout)

* static __inline__ L1_ReturnCode L1_AllocateMemoryBlock_NW (L1_HubID memoryPool, L1_B-
YTE s+memoryBlock, L1_UINT16 size)

* static __inline__ L1_ReturnCode L1_AllocateMemoryBlock_W (L1_HubID memoryPool, L1_BY-
TE **memoryBlock, L1_UINT16 size)

e static __inline__ L.1_ReturnCode L1_AllocateMemoryBlock_WT (L1_HubID memoryPool, L1_B-
YTE s*xmemoryBlock, L1_UINT16 size, L1_Timeout timeout)

e L1_ReturnCode L1_DeallocateMemoryBlock_NW (L1_HubID memoryPool, void *memoryBlock)
* void MemoryPoolloctl (L.1_Hub «xHub, L1_Packet «Packet, L1_BYTE ioctl_type)

¢ L1_BOOL MemoryPoolSyncCondition (L1_Hub «Hub, L1_Packet *Packet)

* void MemoryPoolSynchronize (L1_Hub xhub, L1_Packet s«packet, L1_Packet *waitingPacket)

* void MemoryPoolUpdate (L1_Hub «Hub, L1_Packet «Packet)

6.28.1 Detailed Description

The Memory-Pool-Hub offers Tasks to dynamically allocate and deallocate blocks of memory.

6.28.2 Visual Designer

i

M

Figure 6.7: Application Diagram Icon

6.28.2.1 Properties

The Entity has the following Properties:

VirtuosoNext-Designer-1.0.0.0

6.28. MEMORY POOL HUB 113

* node: The name of the Node to which the Entity is mapped.
* name: Name of the Entity instance.
¢ sizeOfBlocks: The size of the memory blocks the Hub provides, in Bytes.

* numOfBlocks: How many memory blocks the Hub provides.

6.28.3 Example

The the code shown in section MemoryPoolExampleTEP shows a Task that utilises a Memory Pool Hub
to allocate one block of 1024 bytes of memory. It then prints the address of the memory block onto the
console before deallocating the memory block, before releasing it again.

6.28.3.1 Entities

* MPooll: Memory Pool Hub:

— BlockSize = 1024
— NumberOfBlocks = 1

e Shsl1: A Stdio Host Server

 Taskl: The Task that performs the operations, uses the function MemoryPoolExampleTEP() as Task
Entry Point.

6.28.3.2 MemoryPoolExampleTEP

void MemoryPoolExampleTEP (L1_TaskArguments Arguments)
{
// Pointer of the memory block, to be allocated
L1_BYTE % memoryBlock = NULL;

// Allocating the memory block.

if(RC_FAIL == L1_AllocateMemoryBlock_W(MPooll, &memoryBlock, 1024))

{
Shs_putString W(Shsl, "Error could not allocate the memory block.\n");
exit (-1);

}

Shs_putString_W(Shsl, "Could successfully allocate the memory block at: ");

Shs_putInt_W(Shsl, memoryBlock, "d’);

Shs_putString_W(Shsl, "\n");

// Deallocating the previously allocated memory block

if(RC_FAIL == L1l_DeallocateMemoryBlock_NW (MPooll, memoryBlock))

{
Shs_putString W(Shsl, "Error in deallocation of the memory block\n");
exit (=2);

}

Shs_putString W(Shsl, "\nPress enter to terminate the program\n");

VirtuosoNext-Designer-1.0.0.0

114 CHAPTER 6. MODULE DOCUMENTATION

Remarks

SPC Memory Pool
SPC Memory Management

6.28.4 Macro Definition Documentation
6.28.4.1 #define L1_isMemoryPoolHub(h) ((h)->HubType == L1_MEMORYPOOL)

This expression checks whether the pointer h, points to a Memory-Pool hub.

Parameters

\ h | Pointer to an L1_Hub.

Warning

It is the responsibility of the developer to ensure that h points to a structure of type L1_Hub.
This function does not check whether or not h is NULL.

6.28.4.2 #define L1_MemoryPool State(h) ((L1_MemoryPool_HubState:)(h)->HubState)

This macro casts the HubState void pointer to a pointer of type L1_MemoryPool_HubState.

Parameters

\ h | Pointer to an L1_Hub.

Warning

It is the responsibility of the developer to ensure that h points to a structure of type L1_Hub.

This function does not check whether or not the Hub is of type L1_MEMORYPOOL. It is the respon-
sibility of the developer to check this beforehand.

This function does not check whether or not h is NULL.

See Also
L1_isMemoryPoolHub

6.28.5 Function Documentation

6.28.5.1 L1_ReturnCode L1_AllocateMemoryBlock (L1_HubID HubID, L1_BYTE xx Memory, L1_UINT16
Size, L1_Timeout Timeout)

Acquires a memory-block from a local memory pool.

VirtuosoNext-Designer-1.0.0.0

6.28. MEMORY POOL HUB 115

Parameters

HubID

the ID of the MemoryPool from which to acquire a region of memory with the size
specified by the parameter Size.

Memory

if the service completed successfully, this will point to a pointer where the allocated
memory block is located. This memory can then be used by the Task. Otherwise, this
variable will point to a NULL pointer.

Size

the desired size of the MemoryBlock.

Timeout

Indicates the timeout value/mode for the request.

Returns

RC_OK The service completed successfully, Memory points to a pointer which points to the allocated
MemoryBlock.
RC_FAIL The service failed, Memory will point to a NULL pointer.

Warning

The memory pool must be mapped to the same node as the task calling this function.

Precondition

* memoryPool must be local

Postcondition

e Calling task ready.

6.28.5.2 static __inline__ L1_ReturnCode L1_AllocateMemoryBlock_NW (L1_HubID memoryPool,
L1_BYTE «« memoryBlock, L1_UINT16 size) [static]

Acquires a memory-block from a memory pool. This call returns immediately independent of whether or
not a MemoryBlock was available or not.

Parameters
memoryPool | the ID of the MemoryPool from which to acquire a region of memory with the size
specified by the parameter Size.
memoryBlock | if the service completed successfully, this will point to a pointer where the allocated
memory block is located. This memory can then be used by the Task. Otherwise, this
variable will point to a NULL pointer.
size | the desired size of the MemoryBlock. However, it is currently not used correctly by the
function.
Returns

RC_OK The service completed successfully, memoryBlock points to a pointer which points to the
allocated MemoryBlock.
RC_FAIL The service failed, memoryBlock will point to a NULL pointer.

VirtuosoNext-Designer-1.0.0.0

116 CHAPTER 6. MODULE DOCUMENTATION

Warning

The memory pool must be mapped to the same node as the task calling this function.

Precondition

* memoryPool must be local

Postcondition

* Calling task ready.

6.28.5.3 static __inline__ L1_ReturnCode L1_AllocateMemoryBlock_ W (L1_HubID memoryPool, L1_BYTE
x+x memoryBlock, L1_UINT16 size) [static]

Acquires a memory-block from a local memory pool. This service waits till a memory block is available.

Parameters

memoryPool | the ID of the MemoryPool from which to acquire a region of memory with the size
specified by the parameter Size.

memoryBlock | if the service completed successfully, this will point to a pointer where the allocated
memory block is located. This memory can then be used by the Task. Otherwise, this
variable will point to a NULL pointer.

size | the desired size of the MemoryBlock.

Returns

RC_OK The service completed successfully, Memory points to a pointer which points to the allocated
MemoryBlock.
RC_FAIL The service failed, Memory will point to a NULL pointer.

Warning

The memory pool must be mapped to the same node as the task calling this function.

Precondition

* memoryPool must be local

Postcondition

 Calling task ready.

6.28.5.4 static __inline__ L1_ReturnCode L1_AllocateMemoryBlock_ WT (L1_HubID memoryPool,
L1_BYTE x« memoryBlock, L1_UINT16 size, LL1_Timeout timeout) [static]

Acquires a memory-block from a memory pool. Waits until either a memory-block becomes available or
the timeout expired, depending on what happens earlier.

VirtuosoNext-Designer-1.0.0.0

6.28. MEMORY POOL HUB 117

Parameters
memoryPool | the ID of the MemoryPool from which to acquire a region of memory with the size
specified by the parameter Size.
memoryBlock | if the service completed successfully, this will point to a pointer where the allocated
memory block is located. This memory can then be used by the Task. Otherwise, this
variable will point to a NULL pointer.
size | the desired size of the MemoryBlock. However, it is currently not used correctly by the
function.
timeout | of type L1_Timeout, the number of system ticks the call should wait for a Memory-
Block to become available.
Returns

RC_OK The service completed successfully, memoryBlock points to a pointer which points to the
allocated MemoryBlock.

RC_FAIL The service failed, memoryBlock will point to a NULL pointer.

RC_TO The timeout expired without a MemoryBlock becoming available, memoryBlock will point to
a NULL pointer.

Warning

The memory pool must be mapped to the same node as the task calling this function.

Precondition

* memoryPool must be local

Postcondition

¢ Calling task ready.

6.28.5.5 L1_ReturnCode L1_DeallocateMemoryBlock_NW (L1_HubID memoryPool, void « memoryBlock

)

This Kernel service is called by a Task to release a memory-block back to its memory pool.

Parameters

memoryPool

identifies the MemoryPool.

memoryBlock

pointer to the memory-block to release

Returns

RC_OK service successful (a memory block was released to the memory pool)
RC_FAIL service failed (the memory block was not released to the memory pool)

Precondition

¢ None

Postcondition

* Calling task ready

VirtuosoNext-Designer-1.0.0.0

118 CHAPTER 6. MODULE DOCUMENTATION

6.28.5.6 void MemoryPoolloctl (L1_Hub * Hub, L1_Packet « Packet, L1_BYTE ioctl_type)

This function provides a standard handler to the memory pool initialization function through an ioctl oper-
ation to open memory pool hub.

Parameters

Hub | Pointer to a Hub of type L1_MEMORYPOOL.

Packet | Pointer to the L1_Packet which caused the function to be called. It will contain addi-
tional information.

ioctl_type | Control operation to be executed (L1_IOCTL_HUB_OPEN only for this hub).

6.28.5.7 L1_BOOL MemoryPoolSyncCondition (L1_Hub x Hub, L.1_Packet « Packet)
This function evaluates the synchronization condition. If a deallocation is requested (put packet), the
function returns true if the packet has been previously allocated. For allocation requests (get packet), the

function evaluates to true if the free memory block list is not empty.

Parameters

Hub | Pointer to a Hub of type L1_MEMORYPOOL.

Packet | Pointer to the L1_Packet used to test for the synchronization condition.

Returns

L1_TRUE If synchronisation was achieved.
L1_FALSE If synchronisation was not achieved.

6.28.5.8 void MemoryPoolSynchronize (L1_Hub * hub, L.1_Packet x packet, L.1_Packet
waitingPacket)

This function shall first check whether the deallocation request in the L.1_Packet packet is valid. If it is valid
it shall then return the Memory Block to the Hub, before handling the allocation request in the L1_Packet
waitingPacket. Afterwards both Packets get returned to their Tasks with the field Status set to RC_OK.

In the case that packet contains an invalid deallocation request the function shall reinsert the L1_Packet
waitingPacket into the Hub WaitingList before returning packet with packet->Status set to RC_FAIL.

Parameters

hub | Pointer to a Hub of type L1_MEMORYPOOL.

packet | Pointer to the newly arrived L1_Packet.

waitingPacket | Pointer to the L1_Packet which is complementary to the one in the parameter packet.

Precondition

hub NOT NULL

packet NOT NULL

waitingPacket NOT NULL

packet->ServicelD =L1_SID_PUT_TO_HUB
waitingPacket->ServicelD = L1_SID_GET_FROM_HUB

VirtuosoNext-Designer-1.0.0.0

6.29. PACKET POOL HUB 119

6.28.5.9 void MemoryPoolUpdate (L1_Hub « Hub, L.1_Packet « Packet)

This function updates the memory pool hub when receiving packets. A get packet allocates a memory
block. To allocate a memory block, a free block is taken from the memory pool and it is inserted into the
occupied memory block list. A void pointer is returned in the data field of the packed used to allocate the
block. A put packet deallocates a memory block. The inverse process is to remove the block from the
occupied list, and insert it into the free memory block list. The data size of the packet is set to zero to
indicate that not data is returned.

Parameters

Hub | Pointer to a hub of type L1_MEMORYPOOL.
Packet | Pointer to the L1_Packet used for the update operation.

6.29 Packet Pool Hub

Data Structures

e struct _struct_LL1_PacketPoolState_

Typedefs

* typedef struct
_struct_LL1_PacketPoolState_ L.1_PacketPool_HubState

Functions

e L1_ReturnCode L1_AllocatePacket (L1_HubID HubID, L1_Packet **xPacket, L1_Timeout Time-
out)

* static__inline__ L1_ReturnCode L1_AllocatePacket. NW (L1_HubID packetPool, L1_Packet *xpacket)

* static__inline__ L1_ReturnCode L1_AllocatePacket_W (L1_HubID packetPool, L1_Packet sxpacket)

* static__inline__ L1_ReturnCode L1_AllocatePacket_ WT (L1_HubID packetPool, L1_Packet *xpacket,
L1_Timeout timeout)

e L1_ReturnCode L1_DeallocatePacket NW (L1_HubID packetPool, L1_Packet s«packet)

* static __inline__ L1_BOOL L1_isHubPacketPoolPacketAvailable (L1_Hub *pHub)

e static __inline__ L.1_BOOL L1_isPacketPoolHub (L1_Hub xpHub)

e static __inline__
L1_PacketPool_HubState x L.1_PacketPool_State (L1_Hub xpHub)

* void PacketPoolloctl (L1_Hub *Hub, L1_Packet «xPacket, L1_BYTE ioctl_type)

e L1_BOOL PacketPoolSyncCondition (L1_Hub «xHub, L1_Packet «Packet)

* void PacketPoolSynchronize (L1_Hub xhub, L1_Packet *packet, L1_Packet xwaitingPacket)

* void PacketPoolUpdate (L1_Hub xHub, L1_Packet *Packet)

6.29.1 Detailed Description

Remarks

SPC Packet Pool

A Packet Pool allows Tasks to allocate and deallocated additional L1_Packets during runtime.

VirtuosoNext-Designer-1.0.0.0

120 CHAPTER 6. MODULE DOCUMENTATION

6.29.2 Visual Designer

i

P
Figure 6.8: Application Diagram Icon

6.29.2.1 Properties
The Entity has the following Properties:

* node: The name of the Node to which the Entity is mapped.
* name: Name of the Entity instance.

* size: How many L1_Packets the Hub provides.

6.29.3 Typedef Documentation
6.29.3.1 typedef struct _struct_L1_PacketPoolState_ 1.1_PacketPool_HubState
The state of a Packet-Pool-Hub.

Remarks

SPC Packet Pool state variables

6.29.4 Function Documentation

6.29.41 L1_ReturnCode L1_AllocatePacket (L1_HubID HubID, 1.1_Packet «x Packet, L.1_Timeout
Timeout)

This function allocates a packet from a packet pool and initializes the task ID and priority fields.

Parameters

HubID | The ID of the pool where the packet will be allocated.

Packet | The allocated packet will be pointed by this variable when the function succeeds.

Timeout | Indicates the timeout value/mode for the request.

Returns

* RC_OK service completed successfully (there was an available Packet in the Packet Pool).

* RC_FAIL service failed (no available Packet in the Packet Pool), Packet will the point to NULL.

Precondition

¢ There is a Kernel Packet Pool on the Node
¢ This service cannot be called from the ISR LAYER

VirtuosoNext-Designer-1.0.0.0

6.29. PACKET POOL HUB 121

Postcondition

* ServicelD of the pre-allocated Packet of the calling Task will be set to SID_Allocate_Packet.
* Task is on READY list upon return

» Packet can be used for two-phase services.

6.29.4.2 static __inline__ L1_ReturnCode L1_AllocatePacket_ NW (L1_HubID packetPool, 1.1_Packet
packet) [static]

This service allocates a Packet from a Packet-Pool on the local Node. The service returns immediately
either with the allocated Packet or with a return value indicating failure (if there was no available Packet in

the Packet pool).

Parameters

packetPool | the ID of the PacketPool on the local Node.

packet | will contain a pointer to Packet upon successful return.

Returns

* RC_OK the service completed successfully (there was an available Packet in the Packet Pool).
* RC_FAIL service failed (no available Packet in the Packet Pool), Packet will the point to NULL.

Precondition

e There is a local Packet Pool on the Node
¢ This service cannot be called from the ISR LAYER

Postcondition

* ServicelD of the pre-allocated Packet of the calling Task will be set to SID_Allocate_Packet.
¢ Task is on READY list upon return

» Packet can be used for two-phase services.

6.29.4.3 static __inline__ L1_ReturnCode L1_AllocatePacket W (L1_HubID packetPool, 1.1_Packet *x
packet) [static]

This service allocates a Packet from a Packet-Pool on the local Node. It waits until a Packet has been
allocated.

Parameters

packetPool | the ID of the PacketPool on the local Node.

packet | of type L1_Packet«x*, will contain the Packet upon successful return

Returns

* RC_OK service completed successfully (there was an available Packet in the Packet Pool).
* RC_FAIL service failed (no available Packet in the Packet Pool), Packet will the point to NULL.

VirtuosoNext-Designer-1.0.0.0

122 CHAPTER 6. MODULE DOCUMENTATION

Precondition

¢ There is a Kernel Packet Pool on the Node
¢ This service cannot be called from the ISR LAYER

Postcondition

* ServicelD of the pre-allocated Packet of the calling Task will be set to SID_Allocate_Packet.
 Task is on READY list upon return

* Packet can be used for two-phase services.

6.29.4.4 static __inline__ L1_ReturnCode L1_AllocatePacket WT (L1_HubID packetPool, L1_Packet *x
packet, L1_Timeout timeout) [static]

This service allocates a Packet from a Packet-Pool on the local Node. This service waits until either a
Packet has been allocated or the specified timeout has expired. If the timeout has expired the return value

indicates a failed allocation (there was no available Packet in the Packet pool).

Parameters

packetPool | of type L1_HubID, the ID of the PacketPool on the local Node.

packet | will contain the Packet upon successful return.

timeout | the number of system ticks the call should wait for a packet to become available.

Returns

* RC_OK service completed successfully (there was an available Packet in the Packet Pool).
¢ RC_FAIL service failed (no available Packet in the Packet Pool), Packetx is set to NULL.
¢ RC_TO the timeout has expired, Packet will point to NULL.

Precondition

¢ There is a Packet Pool on the Node.
¢ This service cannot be called from the ISR LAYER.

Postcondition

 ServicelD of the pre-allocated Packet of the calling Task will be set to SID_Allocate_Packet.
 Task is on the ReadyList upon return.

 Packet can be used for two-phase services.

6.29.45 L1_ReturnCode L1 _DeallocatePacket NW (L1_HubID packetPool, 1.1_Packet « packet)

This service deallocates a Packet and returns it to the Packet Pool.

VirtuosoNext-Designer-1.0.0.0

6.29. PACKET POOL HUB 123

Parameters

packetPool | the ID of the Packet Pool to which to return packet.

packet | the Packet that needs to be de-allocated.

Returns

* RC_OK service completed successfully.
¢ RC_FAIL service failed.

Precondition

» This service cannot be called by the ISR LAYER.
* Packet must have been allocated by L1_AllocatePacket.

¢ Packet must be a Packet on a local PacketPool.

Postcondition

» Packet is no longer available for use by the Task.

» Packet is available for use by other Tasks.

Note

The L1_DeallocatePacket kernel service is served by the Kernel Task of the Node at which the request-
ing Task resides. Hence, the destination Port is implicitly set to the KernelPort.

6.29.4.6 static __inline__ L1 _BOOL L1_isHubPacketPoolPacketAvailable (L1_Hub « pHub) [static]

This function determines whether or not the Packet Pool pHub still contains L1_Packets which can be
allocated from it.

Parameters

pHub | Pointer to an L1_Hub structure of the Packet Pool for which to check the availability
of Packets.

Returns

L1_TRUE If there are L1_Packets available.
L1_FLASE Otherwise.

6.29.4.7 static __inline__L1_BOOL L1_isPacketPoolHub (L1_Hub x pHub) [static]
Checks whether or not the given data structure represents a PacketPool-Hub.

Parameters

pHub | Pointer to the data structure, of type L1_Hub, which should be checked whether or not
it represents a PacketPool-Hub.

VirtuosoNext-Designer-1.0.0.0

124 CHAPTER 6. MODULE DOCUMENTATION

Returns

L1_TRUE if the data structure represents a PacketPool-Hub.
L1_FALSE otherwise.

Warning

This function does not check whether or not pHub is NULL.
6.29.4.8 static __inline__ L1_PacketPool_HubStatex L1_PacketPool_State (L1_Hub x pHub)
[static]

This function returns the Hub-State of the Hub pHub as a pointer of type L1_PacketPool_HubState.

Parameters

pHub \ Pointer to a Hub of type of type L1_PACKET_POOI.

Warning

This function does not check whether or not the Hub is of type L1_PACKET_POOL. It is the respon-
sibility of the developer to check this beforehand.
This function does not check whether or not pHub is NULL.

See Also
L1_isPacketPoolHub

6.29.4.9 void PacketPoolloctl (L.1_Hub * Hub, L.1_Packet « Packet, L1_BYTE ioctl_type)

This function provides a standard handler to the packet pool initialization function through an ioctl opera-
tion to open packet pool hub.

Parameters

Hub | Pointer to the packet pool hub.

Packet | Pointer to the L1_Packet which caused the function to be called. It will contain addi-
tional information.

ioctl_type | Control operation to be executed (L1_IOCTL_HUB_OPEN only for this hub).

6.29.4.10 L1_BOOL PacketPoolSyncCondition (L1_Hub « Hub, L.1_Packet « Packet)

When deallocating a packet, synchronization should always succeed. For the case of packet allocation, it
should succeed only if the packet pool has available packets to allocate.

Parameters

Hub | Pointer to the packet pool hub.

Packet | Packet used to test for the synchronization condition.

Returns

L1_TRUE If synchronisation was achieved.
L1_FALSE If synchronisation was not achieved.

VirtuosoNext-Designer-1.0.0.0

6.30. PORT HUB 125

6.29.4.11 void PacketPoolSynchronize (L1_Hub * hub, L1_Packet x packet, L1_Packet x
waitingPacket)

This function shall deallocate the L.1_Packet provided in packet, before handling the allocation request in
waitingPacket. Afterwards both Packets get returned to their Tasks with the field Status set to RC_OK.

In the case that packet contains an invalid deallocation request the function shall reinsert the L.1_Packet
waitingPacket into the Hub WaitingList before returning packet with packet->Status set to RC_FAIL.

Parameters

hub | Pointer to a hub of type L1_PACKETPOOL.
packet | Pointer to the newly arrived L1_Packet.
waitingPacket | Pointer to the L1_Packet which is complementary to the one in the parameter packet.

Precondition

hub NOT NULL

packet NOT NULL

waitingPacket NOT NULL

packet->ServicelD = L1_SID_PUT_TO_HUB
waitingPacket->ServicelD = L1_SID_GET_FROM_HUB

6.29.4.12 void PacketPoolUpdate (L1_Hub « Hub, L.1_Packet *« Packet)
This function updates the packet pool when receiving allocate and deallocate requests. To allocate a packet,
a packet is taken from the hub’s packet list and returned as part of the data field of the get packet that

requested the allocation. A deallocation returns the packet to the packet list.

Parameters

Hub | Pointer to the packet pool hub.
Packet | Packet used for the update operation.

6.30 Port Hub

Functions

e static __inline__L1_ReturnCode L1_Drv_Isr_PutPacketToPort_ NW (L1_HubID HubID, L1_Packet
xpacket)

e static __inline__ L1_ReturnCode L1_GetDataFromPort. NW (L1_HubID hubID, L1_BYTE xdata-
Buffer, L1_UINT32 bufferSize, L1_UINT32 xbytesReceived)

e static __inline_ L1_ReturnCode L1_GetDataFromPort_W (L1_HubID hubID, L1_BYTE xdata-
Buffer, L1_UINT32 bufferSize, L1_UINT32 xbytesReceived)

e static __inline__ L1_ReturnCode L1_GetDataFromPort_WT (L1_HubID hubID, L1_BYTE xdata-
Buffer, L1_UINT32 bufferSize, L1_UINT32 xbytesReceived, L1_Timeout timeout)

e static__inline__ L1_ReturnCode L1_GetPacketFromPort_A (L1_HubID HubID, L1_Packet spacket)

e static __inline_ L1_ReturnCode L1_GetPacketFromPort_ NW (L1_HubID HubID)

e static __inline__ L1_ReturnCode L1_GetPacketFromPort_W (L1_HubID HubID)

e static __inline_ L1_ReturnCode L1_GetPacketFromPort_WT (L1_HubID HubID, L1_Timeout time-
out)

VirtuosoNext-Designer-1.0.0.0

126 CHAPTER 6. MODULE DOCUMENTATION

e static __inline__ L.1_BOOL L1_isLocalPortHub (L.1_Hub xpHub)

e static __inline__ L1_ReturnCode L1_PutDataToPort. NW (L1_HubID hubID, L1_BYTE xdata, LL1-
_UINT32 size)

e static __inline__ L1_ReturnCode L1_PutDataToPort. W (L1_HubID hubID, L1_BYTE xdata, L1_-
UINT32 size)

e static __inline_ L1_ReturnCode L1_PutDataToPort_WT (L1_HubID hubID, L1_BYTE xdata, LL1-
_UINT32 size, L1_Timeout timeout)

e static __inline__ L.1_ReturnCode L1_PutPacketToPort_A (L1_HubID HubID, L1_Packet *packet)

e static __inline__ L1_ReturnCode L1_PutPacketToPort_ NW (L1_HubID HubID)

e static __inline__ L1_ReturnCode L1_PutPacketToPort_W (L1_HubID HubID)

e static __inline_ L1_ReturnCode L1_PutPacketToPort_ WT (L1_HubID HubID, L1_Timeout time-
out)

* L1_BOOL LocalPortSyncCondition (L1_Hub *xHub, L1_Packet *xPacket)

* void LocalPortSynchronize (L1_Hub xhub, L1_Packet *packet, L1_Packet xwaitingPacket)

6.30.1 Detailed Description

The Port Hub is uses to exchange data between two Tasks in a reliable way. It’s behavior is similar to a
CSP-Channel.

6.30.2 Visual Designer

d

Figure 6.9: Application Diagram Icon

6.30.2.1 Properties
The Entity has the following Properties:

* node: The name of the Node to which the Entity is mapped.

* name: Name of the Entity instance.

6.30.3 Example

The this example shows how to transfer data from one Task to another Task using a Port.

6.30.3.1 Entities

 Portl: Port which is used to exchange data between Task1 and Task2
* Taskl: Task1EntryPoint, shown in section Source Code for Task1EntryPoint
 Task2: Task2EntryPoint, shown in section Source Code for Task2EntryPoint

e StdioHostServerl: Access to the console.

StdioHostServer1Res: Ensuring that a second task does not interfere with console access.

VirtuosoNext-Designer-1.0.0.0

6.30. PORT HUB 127

6.30.4 Source Code for Task1EntryPoint

#include <L1l_api.h>
#include <L1l_node_config.h>

void TasklEntryPoint (L1_TaskArguments Arguments)
{

L1l_Packet xPacket = L1_CurrentTaskCR->RequestPacket;
L1_BYTE ch;
for (ch = "a’; ch <= ’"z’; ch++)
{
Packet->DataSize = sizeof (L1_BYTE);
Packet->Data[0] ch;

if (RC_FAIL == L1_PutPacketToPort_W (Portl))
{
exit (=1);

6.30.5 Source Code for Task2EntryPoint

#include <L1l_api.h>
#include <L1_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void Task2EntryPoint (L1_TaskArguments Arguments)
{

L1_Packet xPacket = L1_CurrentTaskCR->RequestPacket;
L1_BYTE ch, i;
for(i = 0; 1 < 26; i++)

1f(RC_OK == L1_GetPacketFromPort_W (Portl))
{
Packet->DataSize = sizeof (L1_BYTE);
ch = Packet->Data[0];
L1_LockResource_W(StdioHostServerlRes) ;
Shs_putString W(StdioHostServerl, "The following symbol was get from Port
Shs_putChar_W(StdioHostServerl, ch);
Shs_putChar_W(StdioHostServerl, ’\n’);
L1l _UnlockResource_NW (StdioHostServerlRes);
lelse
{
Shs_putString W(StdioHostServerl, "Error: Could not acquire a symbol fron
\n");
}

VirtuosoNext-Designer-1.0.0.0

128 CHAPTER 6. MODULE DOCUMENTATION

Remarks

REQ Port
SPC Port
6.30.6 Function Documentation

6.30.6.1 static __inline__ L1_ReturnCode L1_Drv_Isr_PutPacketToPort NW (L1_HubID HubID, L.1_Packet
« packet) [static]

This service puts the L1_Packet given in parameter packet of the task calling it into a Port. This function
returns directly, like an Asynchronous Interaction, but the packet will never be returned to the ISR.

Parameters:

Parameters

HublID | is the L1_HubID which identifies the Port-Hub, that the calling ISR wants to send the
Packet to.

packet | Pointer to the L1_Packet that will be used to represent the interaction.

This L1_Packet must have been once initialized using the function L1_Drv_Isr_initialisePacket().

Returns

RC_OK The packet could be inserted into the Kernel Input Port.
RC_FAIL The packet could not be inserted into the Kernel Input Port.

Warning

Must not be used with Port-Hubs located at another Node.
Only to be used within an ISR, not within a Task!

See Also

L1_Drv_Isr_initialisePacket

Remarks

SPC Packets from an ISR

6.30.6.2 static __inline__ L1_ReturnCode L1_GetDataFromPort NW (L1_HubID hubID, L1_BYTE x
dataBuffer, L1_UINT32 bufferSize, L1_UINT32 « bytesReceived) [static]

Receives data from a Port-Hub.

Parameters

hubID | ID of the Hub to send data to.

dataBuffer | This is the pointer to the buffer where to store the data received from the Hub.

VirtuosoNext-Designer-1.0.0.0

6.30. PORT HUB 129

bufferSize | This is the size of the dataBuffer in L1_BYTE. This does not indicate that the interac-
tion will receive so much data, it is just an indication of the maximum number of bytes
the function can store safely in the dataBuffer. The real number of received bytes is
stored, upon return in the parameter bytesReceived.

bytesReceived | Pointer to an L1_UINT32 which will contain the number of bytes that were received
from the Hub after the interaction was performed successfully. This parameter may be
set to NULL to indicate that no interest in this value exists. However, this is generally
not advised.

Returns
L1 ReturnCode:

¢ RC_OK: The interaction was successful;

* RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail: — Not
enough space in the dataBuffer. In this case the data is not lost but is still present in the field Data
of the used L1_Packet. — dataBuffer is NULL — packet is NULL — General failure of the system
causing the interaction with the Hub to fail.

6.30.6.3 static __inline__ L1_ReturnCode L1_GetDataFromPort_ W (L1_HubID hubID, L1_BYTE x
dataBuffer, L1_UINT32 bufferSize, L1_UINT32 « bytesReceived) [static]

Receives data from a Port-Hub.

Parameters

hubID | ID of the Hub to send data to.
dataBuffer | This is the pointer to the buffer where to store the data received from the Hub.
bufferSize | This is the size of the dataBuffer in L1_BYTE. This does not indicate that the interac-
tion will receive so much data, it is just an indication of the maximum number of bytes
the function can store safely in the dataBuffer. The real number of received bytes is
stored, upon return in the parameter bytesReceived.
bytesReceived | Pointer to an L1_UINT32 which will contain the number of bytes that were received
from the Hub after the interaction was performed successfully. This parameter may be
set to NULL to indicate that no interest in this value exists. However, this is generally
not advised.

Returns
L1 ReturnCode:

¢ RC_OK: The interaction was successful;

* RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail: — Not
enough space in the dataBuffer. In this case the data is not lost but is still present in the field Data
of the used L1_Packet. — dataBuffer is NULL — packet is NULL — General failure of the system
causing the interaction with the Hub to fail.

6.30.6.4 static __inline__ L1_ReturnCode L1_GetDataFromPort WT (L1_HubID hubID, L1_BYTE x
dataBuffer, L1_UINT32 bufferSize, L1_UINT32 « bytesReceived, L.1_Timeout timeout)
[static]

Receives data from a Port-Hub.

VirtuosoNext-Designer-1.0.0.0

130

CHAPTER 6. MODULE DOCUMENTATION

Parameters

hubID

ID of the Hub to send data to.

dataBuffer

This is the pointer to the buffer where to store the data received from the Hub.

bufferSize

This is the size of the dataBuffer in L1_BYTE. This does not indicate that the interac-
tion will receive so much data, it is just an indication of the maximum number of bytes
the function can store safely in the dataBuffer. The real number of received bytes is
stored, upon return in the parameter bytesReceived.

bytesReceived

Pointer to an L1_UINT32 which will contain the number of bytes that were received
from the Hub after the interaction was performed successfully. This parameter may be
set to NULL to indicate that no interest in this value exists. However, this is generally
not advised.

timeout

The timeout to use for the interaction with the Hub.

Returns

L1_ReturnCode:

¢ RC_OK: The interaction was successful;

e RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail: — Not
enough space in the dataBuffer. In this case the data is not lost but is still present in the field Data
of the used L1_Packet. — dataBuffer is NULL — packet is NULL — General failure of the system
causing the interaction with the Hub to fail.

¢ RC_TO: The timeout of the interaction expired.

6.30.6.5 static __inline__ L1_ReturnCode L1_GetPacketFromPort_A (L1_HubID HubID, L.1_Packet x

packet)

[static]

Request to get a Packet from a Port without being put in the waiting state. This service requires that the
Get requests use a Packet has been allocated from the Packet Pool). The completion is deferred till a
corresponding L.1_WaitForPacket service request which will return any of the packets previously allocated
but filled in with the data of a corresponding Put_request to one of the Ports.

Parameters
HublID | of type L1_HubID which identifies the Port.
packet | Pointer to the L1_Packet that will be used for this Asynchronous-Interaction. There are
two ways of acquiring such an L1_Packet:
* Allocate an L1_Packet in your Task, and then initialise it using the function L1_-
initialiseAsyncPacket().
e Allocate an L1_Packet from a local (i.e. same Node) Packet Pool-Hub, using
one of the following interactions: L1_AllocatePacket_ W(), L1_AllocatePacket_-
NW(), and L1_AllocatePacket_ WT().
Returns

L1_ReturnCode

* RC_OK service completed successfully.
e RC_FAIL service failed

VirtuosoNext-Designer-1.0.0.0

6.30. PORT HUB 131

Precondition

* Packet must have been allocated by the function L1_AllocatePacket().

Postcondition
¢ The calling task will remain on the READY List.

Warning

This Interaction only works locally (Task and Hub on the same Node), i.e. not distributed (Task and
Hub on different Nodes).

See Also

L1_initialiseAsyncPacket
L1 _AllocatePacket W
L1_AllocatePacket NW
L1_AllocatePacket WT

6.30.6.6 static __inline__ L.1_ReturnCode L1_GetPacketFromPort_ NW (L1_HubID HubID) [static]

Retrieves a packet from a port using the task’s Request-Packet. Returns immediately after the get request
was delivered to the specified Port, indicating either success (there was a corresponding put request at the
specified Port) or a failure (there was no put request at the specified Port; in that case the Get Packet is
NOT buffered in the specified Port).

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters

\ HubID | L1_HubID which identifies the Port.

Note

If the specified Port is remote than the return time includes a communication delay.

Returns

* RC_OK service successful (there was a waiting Put request in the Port)
e RC_FAIL service failed (no corresponding put request in the Port)

Precondition

* Packet is the preallocated SystemPacket

Postcondition

» Header fields of Put Packet filled in the Task’s System Packet.
* Data of Put Packet will have been filled in.

VirtuosoNext-Designer-1.0.0.0

132 CHAPTER 6. MODULE DOCUMENTATION

6.30.6.7 static __inline__ L1_ReturnCode L1_GetPacketFromPort W (L1_HubID HubID) [static]

Retrieves a packet from a port using the task’s Request-Packet. This service waits until the get request has
synchronised with a corresponding put packet delivered to the specified Port.

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters

\ HubID | L1_HubID which identifies the Port.

Returns

* RC_OK service successful (there was a waiting Put request in the Port)

e RC_FAIL service failed (no corresponding put request in the Port)

Precondition

» Packet is the preallocated SystemPacket

Postcondition

* Header fields of Put Packet filled in the Task’s System Packet.
» Data of Put Packet will have been filled in.

6.30.6.8 static __inline__ L1_ReturnCode L1_GetPacketFromPort WT (L1_HubID HubID, 1.1_Timeout
timeout) [static]

Retrieves a packet from a port using the task’s Request-Packet. Waits until either the get request has syn-
chronised with a corresponding put request delivered to the specified Port, or either the specified timeout
has expired. If the timeout has expired the return value indicates a failed request (there was no corre-
sponding request to get a Packet from the specified Port) and the get Packet is removed from the Specified
Port.

Warning

The payload part of the task specific request-packet gets overwritten as soon as another request gets
sent. Therefore, always copy the payload-data to a local buffer using L1_memcpy(...).

Parameters

HubID | L1 _HubID which identifies the Port.

timeout | of type L1_Timeout, the number of system ticks the call should wait for synchronisa-
tion.

VirtuosoNext-Designer-1.0.0.0

6.30. PORT HUB 133

Returns

* RC_OK service successful (there was a waiting Put request in the Port)
* RC_FAIL service failed (no corresponding put request in the Port)
e RC_TO service timed out.

Precondition

» Packet is the preallocated SystemPacket

Postcondition

* Header fields of Put Packet filled in the Task’s System Packet.
* Data of Put Packet will have been filled in.

6.30.6.9 static __inline__L1_BOOL L1_isLocalPortHub (L1_Hub x pHub) [static]

Checks whether or not the given data structure represents a Port-Hub.

Parameters

pHub | Pointer to the data structure, of type L1_Hub, which should be checked whether or not
it represents a Port-Hub.

Returns

L1_TRUE if the data structure represents a BlackBoard-Hub.
L1_FALSE otherwise.

6.30.6.10 static __inline__ L.1_ReturnCode L1_PutDataToPort NW (L1_HubID hubID, L1_BYTE x data,
L1 UINT32 size) [static]

This function performs a data transfer to a Port-Hub. It copies the data stored in the buffer indicated by
data into the data part of an L1_Packet and then sends this packet to the Hub.

Parameters

hubID | ID of the Hub to send data to.

data | pointer to a buffer of type L1_BYTE which contains the data that should be sent to the
Hub.

size | size of the buffer pointed to by data. This must not be larger than L1_PACKET_SIZE,
otherwise the interaction will return RC_FAIL.

Returns
L1 ReturnCode:

¢ RC_OK: The interaction was successful;

* RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail; — The
buffer data does not fit in the data part of the L1_Packet (L1_PACKET_DATA_SIZE). — data-
Buffer is NULL — packet is NULL — General failure of the system causing the interaction with
the Hub to fail.

* RC_TO: The timeout of the interaction expired.

VirtuosoNext-Designer-1.0.0.0

134 CHAPTER 6. MODULE DOCUMENTATION

Warning

Only use this functions to interact with Port- or Fifo-Hubs. Interacting with other types of Hubs may
have undesired effects.

6.30.6.11 static __inline__ L1_ReturnCode L1_PutDataToPort W (L1_HubID hubID, L1_BYTE « data,
L1_UINT32 size) [static]

This function performs a data transfer to a Port-Hub. It copies the data stored in the buffer indicated by
data into the data part of an L1_Packet and then sends this packet to the Hub.

Parameters

hubID | ID of the Hub to send data to.

data | pointer to a buffer of type L1_BYTE which contains the data that should be sent to the
Hub.

size | size of the buffer pointed to by data. This must not be larger than L1_PACKET_SIZE,
otherwise the interaction will return RC_FAIL.

Returns
L1_ReturnCode:
¢ RC_OK: The interaction was successful;

e RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail; — The
buffer data does not fit in the data part of the L1_Packet (L1_PACKET_DATA_SIZE). — data-
Buffer is NULL — packet is NULL — General failure of the system causing the interaction with
the Hub to fail.

Warning

Only use this functions to interact with Port- or Fifo-Hubs. Interacting with other types of Hubs may
have undesired effects.

6.30.6.12 static __inline__ L.1_ReturnCode L1_PutDataToPort WT (L1_HublID hubID, L1 _BYTE x data,
L1_UINT32 size, L1_Timeout timeout) [static]

This function performs a data transfer to a Port-Hub. It copies the data stored in the buffer indicated by
data into the data part of an L1_Packet and then sends this packet to the Hub.

Parameters

hubID | 1D of the Hub to send data to.

data | pointer to a buffer of type L1_BYTE which contains the data that should be sent to the
Hub.

size | size of the buffer pointed to by data. This must not be larger than L1_PACKET_SIZE,
otherwise the interaction will return RC_FAIL.

timeout | The timeout in ticks for the interaction.

VirtuosoNext-Designer-1.0.0.0

6.30. PORT HUB 135

Returns
L1_ReturnCode:

¢ RC_OK: The interaction was successful;

e RC_FAIL: The interaction failed. There are multiple reasons for the interaction to fail; — The
buffer data does not fit in the data part of the L1_Packet (L1_PACKET_DATA_SIZE). — data-
Buffer is NULL — packet is NULL — General failure of the system causing the interaction with
the Hub to fail.

* RC_TO: The timeout of the interaction expired.

Warning

Only use this functions to interact with Port- or Fifo-Hubs. Interacting with other types of Hubs may
have undesired effects.

6.30.6.13 static __inline__ L1_ReturnCode L1_PutPacketToPort_A (L1_HublID HubID, 1.1_Packet = packet
) [static]

Puts a Packet (that must be allocated from the Packet Pool) to a Port and returns immediately without being
put in the waiting state. Completion is deferred till a corresponding Get service request which will return
any of the packets previously Put asynchronously.

Note

The algorithm for L1_PutPacketToPort_A is the same as of L1_PutPacket_W, except that L1_insert-
PacketInKernel will not remove the calling Task from the ReadyList.

Parameters

HubID | of type L1_HubID, which identifies the Port.

packet | Pointer to the L1_Packet that will be used for this Asynchronous-Interaction. There are
two ways of acquiring such an L1_Packet:

* Allocate an L1_Packet in your Task, and then initialise it using the function L1_-
initialiseAsyncPacket().

e Allocate an L1_Packet from a local (i.e. same Node) Packet Pool-Hub, using
one of the following interactions: L1_AllocatePacket_ W(), L1_AllocatePacket_-
NW(), and L1_AllocatePacket_ WT().

Returns
L1 _ReturnCode:

¢ RC_OK service successful (there was a waiting Get request in the Port)

* RC_FAIL service failed (no corresponding Get request in the Port)

Precondition

* Packet must have been allocated by the function L1_AllocatePacket.

VirtuosoNext-Designer-1.0.0.0

136 CHAPTER 6. MODULE DOCUMENTATION

Postcondition

* The calling task will remain on the READY List.

Warning

This Interaction only works locally (Task and Hub on the same Node), i.e. not distributed (Task and
Hub on different Nodes).

See Also

L1_initialiseAsyncPacket
L1 _AllocatePacket W
L1_AllocatePacket NW
L1_AllocatePacket WT

6.30.6.14 static __inline__ L1_ReturnCode L1_PutPacketToPort NW (L1_HubID HubID) [static]

This service puts the Request-Packet of the task calling it into a Port. The service returns immediately after
the Packet was delivered to the specified Port. Indicates either success (there was a corresponding request
to get a Packet from the destination Port) or failure (there was no corresponding request to get a Packet
from the specified Port; in that case the put Packet is NOT buffered in the specified Port).

Note

If the specified Port is remote than the return time includes a communication delay.

Parameters

‘ HubID | of type L1_HubID, which identifies the Port.

Returns
L1_ReturnCode:

* RC_OK service successful (there was a waiting Get request in the Port)

¢ RC_FAIL service failed (no corresponding Get request in the Port)

Precondition
¢ None

* Packet is the preallocated Packet

Postcondition
* The Header field of the RequestPacket are filled in.
* Header fields of preallocated Packet filled in

VirtuosoNext-Designer-1.0.0.0

6.30. PORT HUB 137

6.30.6.15 static __inline__ L1_ReturnCode L1_PutPacketToPort W (L1_HubID HubID) [static]

This service puts the Request-Packet of the task calling it into a Port. This service waits until the put request
has synchronised with a corresponding request to get a Packet from the specified Port.

Parameters

\ HubID | of type L1_HublID, which identifies the Port.

Returns
L1_ReturnCode:
* RC_OK service successful (there was a waiting Get request in the Port)

* RC_FAIL service failed (no corresponding Get request in the Port)

Precondition
* None

* Packet is the preallocated Packet

Postcondition

* The Header field of the RequestPacket are filled in.
* Header fields of preallocated Packet filled in

6.30.6.16 static __inline__ L1_ReturnCode L1_PutPacketToPort WT (L1_HubID HubID, L.1_Timeout
timeout) [static]

This service puts the Request-Packet of the task calling it into a Port. Waits until either the put request
has synchronised with a corresponding request to get a Packet from the specified Port, or else the specified
timeout has expired. If the timeout has expired the return value indicates a failed request (there was no
corresponding request to get a Packet from the specified Port) and the put Packet is removed from the
specified Port.

Parameters

HubID | of type L1_HubID, which identifies the Port.

timeout | of type L1_Timeout, the number of system ticks the call should wait for synchronisa-
tion.

Returns
L1_ReturnCode:
¢ RC_OK service successful (there was a waiting Get request in the Port)
* RC_FAIL service failed (no corresponding Get request in the Port)
¢ RC_TO service timed out.

VirtuosoNext-Designer-1.0.0.0

138

CHAPTER 6. MODULE DOCUMENTATION

Precondition

¢ None

¢ Packet is the preallocated Packet

Postcondition

* The Header field of the RequestPacket are filled in.
* Header fields of preallocated Packet filled in

6.30.6.17 L1_BOOL LocalPortSyncCondition (L1_Hub x Hub, L1_Packet x Packet)

Remarks

SPC Port

This function returns L1_TRUE when synchronisation happens in a Port Hub.

Parameters

Hub

Pointer to the L1_Hub structure of the Port Hub to check..

Packet

Pointer to the L1_Packet received at the Port Hub.

Returns

L1_BOOL:

* L1_FALSE Synchronisation occurred.

* L1_TRUE Synchronisation did not occur.

Precondition

e empty waiting list.

Postcondition

¢ None

6.30.6.18 void LocalPortSynchronize (L1_Hub * hub, L1_Packet * packet, L.1_Packet * waitingPacket

)

This function shall copy the data and data size from the Put-Packet to the Get-Packet and then return both
Packets to their Tasks.

Parameters

hub

Pointer to a hub of type L1_PORT.

packet

Pointer to the newly arrived L1_Packet.

waitingPacket

Pointer to the L1_Packet which is complementary to the one in the parameter packet.

VirtuosoNext-Designer-1.0.0.0

6.31. RESOURCE HUB 139

Precondition

hub NOT NULL
packet NOT NULL
waitingPacket NOT NULL

Postcondition

packet->Status = RC_OK
waitingPacket->Status = RC_OK

6.31 Resource Hub

Data Structures

e struct _struct_LL1_ResourceState_

Typedefs

¢ typedef struct
_struct_L1_ResourceState_ LL1_Resource_HubState

Functions

e static __inline__ L.1_BOOL L1_isHubResourceL.ocked (L.1_Hub *pHub)

e static __inline__ L.1_BOOL L1_isResourceHub (L1_Hub *«pHub)

e static __inline__ L1_ReturnCode L1_LockResource_ NW (L1_HubID HubID)

e static __inline__ L1_ReturnCode L1_LockResource_W (L1_HubID HubID)

e static __inline__L1_ReturnCode L1_LockResource_ WT (L1_HubID HubID, L1_Timeout timeout)
e static __inline__ L1_ReturnCode L1_UnlockResource_NW (L1_HubID HubID)

e L1_BOOL ResourceSyncCondition (L1_Hub *Hub, L1_Packet «Packet)

¢ void ResourceSynchronize (L1_Hub xhub, L1_Packet «packet, L1_Packet *waitingPacket)

* void ResourceUpdate (L1_Hub «Hub, L1_Packet xPacket)

6.31.1 Detailed Description

The Resource-Hub is a synchronisation mechanism to prevent two or more Tasks accessing the same global
resource at the same time.

6.31.2 Visual Designer

Figure 6.10: Application Diagram Icon

VirtuosoNext-Designer-1.0.0.0

140 CHAPTER 6. MODULE DOCUMENTATION

6.31.2.1 Properties

The Entity has the following Properties:

* node: The name of the Node to which the Entity is mapped.
* name: Name of the Entity instance.

* ceilingPriority: The ceiling priority of the Entity.

6.31.3 Example

This examples illustrates how a Resource Hub can be used to guard access to a shared resource, in this case
a Stdio Host Server. It consists of two tasks: Task1 and Task2, which both count from 0 to 19 and print out
the counting messages onto the console using the Stdio Host Server StdioHostServerl.

6.31.3.1 Entities

Task1: Task1EntryPoint, shown in section Source Code of Task 1 EntryPoint

Task1: Task2EntryPoint, shown in section Source Code of Task2EntryPoint

StdioHostServerl: A Stdio Host Server component which provides access to the console.

¢ StdioHostServer1Res: A Resource Hub to ensure that a second task does not interfere with console
access.

6.31.4 Source Code of Task1EntryPoint

#include <L1l_api.h>
#include <L1l_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void TasklEntryPoint (L1_TaskArguments Arguments)

{
L1 _UINT32 i

for(i = 0;

{

0;
i < 20; i++)

L1_LockResource_W (StdioHostServerlRes) ;
Shs_putString_W(StdioHostServerl, "Task 1 outputs: 0x");
Shs_putInt_W(StdioHostServerl, i, ’'x’');
Shs_putChar_W(StdioHostServerl, ’'\n’);

L1l _UnlockResource_NW (StdioHostServerlRes);

6.31.5 Source Code of Task2EntryPoint

#include <L1_api.h>
#include <Ll_node_config.h>
#include <StdioHostService/StdioHostClient.h>

VirtuosoNext-Designer-1.0.0.0

6.31. RESOURCE HUB 141
void Task2EntryPoint (L1_TaskArguments Arguments)
{
L1_UINT32 i = 0;
for(i = 0; 1 < 20; i++)
{
L1 _LockResource_W(StdioHostServerlRes) ;
Shs_putString W (StdioHostServerl, "Task 2 outputs: 0x");

Shs_putInt_W(StdioHostServerl, i, ’'x');
Shs_putChar_W(StdioHostServerl, ’'\n’);
L1_UnlockResource_NW (StdioHostServerlRes);

Remarks

REQ Resource
SPC Resource

6.31.6 Typedef Documentation
6.31.6.1 typedef struct _struct_L.1_ResourceState_ L.1_Resource_HubState
State of a Resource-Hub.

Remarks

SPC Resource state variables
6.31.7 Function Documentation
6.31.7.1 static __inline__ L1 _BOOL L1_isHubResourceLocked (L1_Hub x pHub) [static]

Determines whether the Resource-Hub identified by pHub is locked.

Parameters

\ pHub \ Pointer to the Hub data structure of a Resource-Hub.

Returns

L1_TRUE If the FIFO is locked.
L1_FALSE If the FIFO is unlocked.

6.31.7.2 static __inline__ L1_BOOL L1_isResourceHub (L1_Hub * pHub) [static]

Checks whether or not the given data structure represents a Resource-Hub.

VirtuosoNext-Designer-1.0.0.0

142 CHAPTER 6. MODULE DOCUMENTATION
Parameters
pHub | Pointer to the data structure, of type L1_Hub, which should be checked whether or not
it represents a Resource-Hub.
Returns

L1_TRUE If the data structure represents a Resource-Hub.
L1_FALSE Otherwise.

6.31.7.3 static __inline__ L1_ReturnCode L1_LockResource NW (L1_HubID HubID) [static]

Locks a logical Resource. This service does return immediately, even if it could not lock the resource.

Parameters

\ HubID | identifies the Resource-Hub, that the calling Task wants to lock.

Returns

RC_OK service successful (the resource was acquired and locked)
RC_FAIL service failed (the resource was not acquired)

Precondition

¢ None

Postcondition

* Calling task ready

6.31.7.4 static __inline__ .1_ReturnCode L1_LockResource W (L1_HubID HubID) [static]

Locks a logical Resource. This service waits until it could lock the logical Resource.

Parameters

\ HubID \ identifies the Resource-Hub, that the calling Task wants to lock.

Returns

RC_OK service successful (the resource was acquired and locked)
RC_FAIL service failed (the resource was not acquired)

Precondition

¢ None

Postcondition

¢ Calling task ready

VirtuosoNext-Designer-1.0.0.0

6.31. RESOURCE HUB 143

6.31.7.5 static __inline__ L1_ReturnCode L1_LockResource WT (L1_HubID HubID, L.1_Timeout timeout
) [static]

Locks a logical Resource. This service waits until it either could lock the resource or the timeout expired.

Parameters

HubID | identifies the Resource-Hub, that the calling Task wants to lock

timeout | the number of system ticks the call should wait for synchronisation.

Returns

RC_OK service successful (the resource was acquired and locked)
RC_FAIL service failed (the resource was not acquired)
RC_TO service timed out.

Precondition

¢ None

Postcondition

¢ Calling task ready

6.31.7.6 static __inline__ L1_ReturnCode L1_UnlockResource NW (L1_HubID HubID) [static]

Unlocks a logical Resource. This service returns immediately, independent whether or not it could unlock
the resource.

Parameters

‘ HubID ‘ identifies the Resource-Hub, that the calling Task wants to unlock.

Returns

RC_OK service successful (the resource was released)
RC_FAIL service failed (the resource could not be unlocked)

Precondition

¢ None

Postcondition

¢ Calling task ready

VirtuosoNext-Designer-1.0.0.0

144 CHAPTER 6. MODULE DOCUMENTATION

6.31.7.7 L1_BOOL ResourceSyncCondition (L1_Hub « Hub, L.1_Packet = Packet)

This function returns true when synchronization is achieved. For a lock resource request, it returns true if
the resource is unlocked. If the resource was previously locked, the function returns false and RC_FAIL in
the status of the packet received. For an unlock resource request, it returns L1_TRUE if the resource was
previously locked and the task unlocking it is the same than the one that set the lock. Otherwise it returns
L1_FALSE and RC_FAIL in the status of the packet received.

Parameters

Hub | Pointer to a hub of type L1_RESOURCE.

Packet | Packet used for the synchronization operation.

Returns

L1_TRUE If synchronisation was achieved.
L1_FALSE If synchronisation was not achieved.

6.31.7.8 void ResourceSynchronize (L1_Hub = hub, L1_Packet x packet, L1_Packet x waitingPacket)

This function shall utilise the function ResourceSyncCondition() to check whether the L1_Packet packet
contains a valid request. In which case it shall call ResourceUpdate with the L1_Packet packet as parameter,
followed by a call to ResourceUpdate with the L1_Packet waitingPacket as parameter.

Otherwise, the function shall return the L1_Packet packet with packet->Status set to RC_FAIL and insert
the L1_Packet waitingPacket into the Hub-WaitingList.

Parameters

hub | Pointer to a hub of type L1_RESOURCE.

packet | Pointer to the newly arrived L1_Packet.

waitingPacket | Pointer to the L1_Packet which is complementary to the one in the parameter packet.

Precondition

hub NOT NULL

packet NOT NULL

waitingPacket NOT NULL

packet->ServicelD = L1_SID_PUT_TO_HUB
waitingPacket->ServicelD = L1_SID_GET_FROM_HUB

See Also

ResourceSyncCondition
ResourceUpdate

6.31.7.9 void ResourceUpdate (L1_Hub * Hub, L1_Packet « Packet)

This function updates the state of the resource when required. When a request to lock a resource is received,
it sets the resource to locked, and it sets the owner to the task that locked the resource. When a request to
unlock the resource is received, the resource is unlocked.

VirtuosoNext-Designer-1.0.0.0

6.32. SEMAPHORE HUB 145

Parameters

Hub | Pointer to a hub of type LI_RESOURCE.

Packet | Packet used for the update operation.

6.32 Semaphore Hub

Data Structures

e struct _struct_L.1_SemaphoreState_

Typedefs

* typedef struct
_struct_L1_SemaphoreState_ L1_Semaphore_HubState

Functions

e static __inline__ L1_ReturnCode L1_Drv_Isr_SignalSemaphore_ NW (L1_HubID semaphore, L1_-
Packet *packet)

* static __inline__ L1_BOOL L1_isHubSemaphoreSet (L1_Hub xpHub)

e static __inline__ L.1_BOOL L1_isSemaphoreHub (L.1_Hub *xpHub)

e static __inline__ L.1_ReturnCode L.1_SignalSemaphore_ NW (L1_HubID HubID)
* static __inline__ L1_ReturnCode L1_SignalSemaphore_W (L1_HubID HubID)

e static __inline__ L 1_ReturnCode L1_SignalSemaphore_WT (L.1_HubID HubID, L.1_Timeout time-
out)

e static __inline__ L.1_ReturnCode L.1_TestSemaphore_A (L1_HubID HubID, L1_Packet spacket)

e static __inline__ L.1_ReturnCode L1_TestSemaphore_ NW (L1_HubID HubID)

e static __inline__ L.1_ReturnCode L.1_TestSemaphore_W (L1_HubID HubID)

e static __inline__ L1_ReturnCode L1_TestSemaphore_ WT (L1_HubID HubID, L1_Timeout time-
out)

e L1_BOOL SemaphoreSyncCondition (L1_Hub *xHub, L1_Packet *Packet)

* void SemaphoreUpdate (L1_Hub xHub, L.1_Packet xPacket)

6.32.1 Detailed Description

Represents a counting semaphore, this means that the Semaphore-Hub counts how often it has been sig-
naled and then permits to being tested the same amount of times.

6.32.2 Visual Designer

®

Figure 6.11: Application Diagram Icon

VirtuosoNext-Designer-1.0.0.0

146 CHAPTER 6. MODULE DOCUMENTATION

6.32.2.1 Properties
The Entity has the following Properties:

¢ node: The name of the Node to which the Entity is mapped.
* name: Name of the Entity instance.

* ceilingPriority: The ceiling priority of the Entity.

6.32.3 Example

This example demonstrates the Tasks synchronization mechanism via the Semaphore Hub, by implement-
ing a so called Semaphore-loop. In the Semaphore-loop Taskl signals Seamaphore Semal, while Task2
waits for Semal to be signalled. Upon being signalled Task2 signals Sema2 for which Taskl waits to
become signalled. Then the whole thing repeats.

6.32.3.1 Entities

Task1: Task1EntryPoint, shown in section Source Code of Task1EntryPoint

Task1: Task2EntryPoint, shown in section Source Code of Task2EntryPoint
* Semal: Semaphore Hub

* Sema2: Semaphore Hub

StdioHostServerl: Stdio Host Server used to print messages onto the screen.

6.32.4 Source Code of Task1EntryPoint

#include <L1l_api.h>
#include "L1_node_config.h"
#include <StdioHostService/StdioHostClient.h>

void TasklEntryPoint (L1_TaskArguments Arguments)
{
while (1)
{
Shs_putString W (StdioHostServerl, "Task 1 signals Sema l\n");
1f(RC_OK !'= L1_SignalSemaphore_W(Semal))
{
Shs_putString_W(StdioHostServerl, "Not Ok\n");
}

Shs_putString W(StdioHostServerl, "Task 1 tests Sema 2\n");
1f(RC_OK !'= L1_TestSemaphore_W (Sema2))
{
Shs_putString_W(StdioHostServerl, "Not Ok\n");
}

VirtuosoNext-Designer-1.0.0.0

6.32. SEMAPHORE HUB 147

6.32.5 Source Code of Task2EntryPoint

#include <L1l_api.h>
#include <L1_node_config.h>
#include <StdioHostService/StdioHostClient.h>

void Task2EntryPoint (L1_TaskArguments Arguments)
{
while (1)
{
Shs_putString_W(StdioHostServerl, "Task 2 tests Sema 1\n");
1f(RC_OK != L1_TestSemaphore_W(Semal))
{
Shs_putString W(StdioHostServerl, "Not Ok\n");
}
Shs_putString W (StdioHostServerl, "Task 2 signals Sema 2\n");
1f(RC_OK != L1_SignalSemaphore_W(SemaZ2))
{
Shs_putString W(StdioHostServerl, "Not Ok\n");

Remarks

REQ Semaphore
SPC Semaphore

6.32.6 Typedef Documentation

6.32.6.1 typedef struct _struct_L1_SemaphoreState_ L.1_Semaphore_HubState
State of a Semaphore-Hub.

Remarks

SPC Semaphore state variable

6.32.7 Function Documentation

6.32.7.1 static __inline__ L1_ReturnCode L1_Drv_Isr_SignalSemaphore_NW (L1_HublD semaphore,
L1_Packet x packet) [static]

Signals a semaphore, i.e. increases the semaphore count. This function returns directly, like an Asyn-
chronous Interaction, but the packet will never be returned to the ISR.

Parameters:

Parameters

semaphore | is the L1_HubID which identifies the Semaphore, that the calling ISR wants to signal/
packet | Pointer to the L1_Packet that will be used to represent the interaction. This L1_Packet

must have been once initialized using the function L1_Drv_Isr_initialisePacket().

VirtuosoNext-Designer-1.0.0.0

148 CHAPTER 6. MODULE DOCUMENTATION

Returns

RC_OK The packet that raises the Event could be inserted into the Kernel Input Port.
RC_FAIL The packet that raises the Event could not be inserted into the Kernel Input Port.

Warning

Must not be used with Semaphore-Hubs located at another Node.
Only to be used within an ISR, not within a Task!

See Also

L1_Drv_Isr_initialisePacket

Remarks

SPC Packets from an ISR

6.32.7.2 static __inline__ L1 _BOOL L1_isHubSemaphoreSet (L1_Hub « pHub) [static]

Determines if the count of an L1_Semaphore_HubState is higher than zero (semaphore set).

Parameters

‘ pHub ‘ Pointer to a Hub data structure of a Semaphore-Hub.

Returns

L1_TRUE If the Semaphore-Hub is set.
L1_FALSE Otherwise.

6.32.7.3 static __inline__L1_BOOL L1_isSemaphoreHub (L1_Hub x pHub) [static]

Checks whether or not the given data structure represents a Semaphore-Hub.

Parameters

pHub | Pointer to the data structure, of type L1_Hub, which should be checked whether or not
it represents a Semaphore-Hub.

Returns

L1_TRUE If the data structure represents a Semaphore-Hub.
L1_FALSE Otherwise.

VirtuosoNext-Designer-1.0.0.0

6.32. SEMAPHORE HUB 149

6.32.7.4 static __inline__ L1_ReturnCode L1_SignalSemaphore_NW (L1_HubID HubID) [static]

Signals a semaphore, i.e. increases the semaphore count. This call returns immediately.

Parameters:

Parameters
\ HubID \ is the L1_HubID which identifies the Semaphore, that the calling Task wants to signal \

Returns
L1_ReturnCode:

* RC_OK service successful (the semaphore count was incremented)

* RC_FAIL service failed (the semaphore count was not incremented)

Precondition

¢ None

Postcondition

* Semaphore count incremented

 Calling tasks ready

6.32.7.5 static __inline__ L1_ReturnCode L1_SignalSemaphore W (L1_HubID HubID) [static]

Signals a semaphore, i.e. increases the semaphore count. This call waits until it could increment the
Semaphore count.
Parameters:

Parameters
\ HubID \ the L1_HubID which identifies the Semaphore, that the calling Task wants to signal \

Returns
L1_ReturnCode:

* RC_OK service successful (the semaphore count was incremented)

e RC_FAIL service failed (the semaphore count was not incremented)

Precondition

¢ None

Postcondition

* Semaphore count incremented

¢ Calling tasks ready

VirtuosoNext-Designer-1.0.0.0

150 CHAPTER 6. MODULE DOCUMENTATION

6.32.7.6 static __inline__ L1_ReturnCode L1_SignalSemaphore WT (L1_HubID HubID, 1.1_Timeout
timeout) [static]

Signals a semaphore, i.e. increases the semaphore count. This service waits until it either could increment
the semaphore count or the timeout expired.

Parameters:

Parameters

HublID | is the L1_HubID which identifies the Semaphore, that the calling Task wants to signal

timeout | the number of system ticks the call should wait for synchronisation.

Returns

L1_ReturnCode:
¢ RC_OK service successful (the semaphore count was incremented)
* RC_FAIL service failed (the semaphore count was not incremented)

¢ RC_TO service timed out.

Precondition

¢ None

Postcondition
¢ Semaphore count incremented

 Calling tasks ready

6.32.7.7 static __inline__ L.1_ReturnCode L1_TestSemaphore_A (L1_HubID HubID, 1.1_Packet * packet)
[static]

Tests whether or not a Semaphore is ready, i.e. the semaphore count is larger than zero. The completion is
deferred until a corresponding L.1_WaitForPacket call happens.

Parameters

HublID | is of type L1_HubID and identifies the Event, that the calling Task wants to test.

packet | Pointer to the L1_Packet that will be used for this Asynchronous-Interaction. There are
two ways of acquiring such an L1_Packet:

¢ Allocate an L1_Packet in your Task, and then initialise it using the function L1_-
initialiseAsyncPacket().
e Allocate an L1_Packet from a local (i.e. same Node) Packet Pool-Hub, using

one of the following interactions: L1_AllocatePacket_W(), L1_AllocatePacket_-
NW(), and L1_AllocatePacket_ WT().

VirtuosoNext-Designer-1.0.0.0

6.32. SEMAPHORE HUB 151

Returns

L1_ReturnCode, the following return values are possible:
¢ RC_OK service successful
¢ RC_FAIL service failed

Precondition

» Packet is a preallocated L1_Packet, initialised using L1_initialiseAsyncPacket().

Postcondition

* Header fields of preallocated Packet filled in
» Data of Put Packet will have been filled in

Warning

This Interaction only works locally (Task and Hub on the same Node), i.e. not distributed (Task and
Hub on different Nodes).

See Also

L1_initialiseAsyncPacket
L1 AllocatePacket W
L1_AllocatePacket NW
L1_AllocatePacket WT

6.32.7.8 static __inline__ L1_ReturnCode L1_TestSemaphore_ NW (L1_HubID HubID) [static]

Tests whether or not a Semaphore is ready, i.e. the semaphore count is larger than zero. This service returns
immediately, even if it could not decrement the semaphore counter.

Parameters

‘ HubID ‘ identifies the Semaphore, that the calling Task wants to test.

Returns
L1_ReturnCode

* RC_OK The service call was successful (the semaphore count was >1 and decremented)
¢ RC_FAIL The service call failed.

Precondition

¢ None

Postcondition

* Semaphore count is O or decremented by one.

* Calling tasks ready

VirtuosoNext-Designer-1.0.0.0

152 CHAPTER 6. MODULE DOCUMENTATION

6.32.7.9 static __inline__ L1_ReturnCode L1_TestSemaphore W (L1_HubID HubID) [static]

Tests whether or not a Semaphore is ready, i.e. the semaphore count is larger than zero. This service waits
until it could decrement the semaphore count.

Parameters
‘ HubID ‘ identifies the Semaphore-Hub, that the calling Task wants to test.

Returns
L1 _ReturnCode

* RC_OK The service call was successful (the semaphore count was >1 and decremented)
¢ RC_FAIL The service call failed.

Precondition

¢ None

Postcondition

* Semaphore count is O or decremented by one.

* Calling tasks ready

6.32.7.10 static __inline__ L1_ReturnCode L1_TestSemaphore WT (L1_HubID HubID, L1_Timeout
timeout) [static]

Tests whether or not a Semaphore is ready, i.e. the semaphore count is larger than zero. This service waits
until it either could decrement the semaphore or the timeout expired.

Parameters
HublID | is of type L1_HubID and identifies the Semaphore, that the calling Task wants to test.
timeout | the number of system ticks the call should wait for synchronisation.

Returns

L1_ReturnCode, the following return values are possible:
¢ RC_OK service successful (there was a set Event)
e RC_FAIL service failed (there was no set Event)

¢ RC_TO service timed out.

Precondition

¢ None

Postcondition

* Semaphore count is 0 or decremented by one.

* Calling tasks ready

VirtuosoNext-Designer-1.0.0.0

6.33. MEMORY BLOCK QUEUE HUB 153

6.32.7.11 L1_BOOL SemaphoreSyncCondition (L1_Hub * Hub, 1.1_Packet « Packet)

This function evaluates if the update function should be executed, depending on the type of packet received.
For put packets, the semaphore sync condition is always true. For get packets, the semaphore sync condition
is true if the count is larger than zero.

Parameters

Hub | Semahpore hub that is tested for synchronization.

Packet | Put or get packet received by the hub.

Returns

L1_BOOL
¢ L1_TRUE Update condition is true (update function should be called).
¢ L1_FALSE Update condition is false (update function should not be called).

Precondition

e Hub is of L1_Hub type.

e empty waiting list, as complimentary packets are already accounted for.

6.32.7.12 void SemaphoreUpdate (L1_Hub * Hub, L1_Packet « Packet)

This function updates the state of a Semaphore Hub, depending on the type of packet received. Put packets
signal the semaphore. Get packets test the semaphore.

Parameters

Hub | Event hub that is updated.

Packet | Put or get packet received by the hub.

Precondition

* Hub is of L1_Hub type.

6.33 Memory Block Queue Hub

Data Structures

* struct L1_MemoryBlockQueue_HubState

Macros

e #define L1_isMemoryBlockQueueHub(h) ((h)->HubType == L1_MEMORY_BLOCK_QUEUE)

Enumerations

* enum MemoryBlockQueueHub_IOCTL_CODES {,L1_IOCTL_MBQ_ISR_SEND_BLOCK = (L1-
_IOCTL_HUB_END + 3) }

VirtuosoNext-Designer-1.0.0.0

154

CHAPTER 6. MODULE DOCUMENTATION

Functions

L1_ReturnCode L1_AcquireMemoryBlock_NW (L1_HubID hubID, L1_MemoryBlock sxxppMemory-
Block)

L1_ReturnCode L1_DequeueMemoryBlock (L1_HubID hubID, L1_Packet *packet, L1_Memory-
Block #xppMemoryBlock, L1_Timeout Timeout)

static __inline__ L1_ReturnCode L1_DequeueMemoryBlock_NW (L1_HubID hubID, L1_Memory-
Block *sppMemoryBlock)

static __inline__ L 1_ReturnCode L1_DequeueMemoryBlock_W (L1_HubID hubID, L1_Memory-
Block *sppMemoryBlock)

static __inline__ L.1_ReturnCode L1_DequeueMemoryBlock_WT (L1_HubID hubID, L1_Memory-
Block xsppMemoryBlock, L1_Timeout Timeout)

static L1_ReturnCode L1_Drv_Isr_EnqueueMemoryBlock_NW (L1_HubID mbq, L1_Packet «packet,
L1_BYTE xbuffer, L1_UINT32 dataSize, L1_BOOL urgent)

L1_ReturnCode L1_EnqueueMemoryBlock (L1_HubID hubID, L1_Packet *packet, L1_Memory-
Block xsppMemoryBlock, L1_BOOL urgent, L1_Timeout Timeout)

static __inline__ L1_ReturnCode L1_EnqueueMemoryBlock_NW (L1_HubID hubID, L1_Memory-
Block xsppMemoryBlock, L1_BOOL urgent)

static __inline__ L1_ReturnCode L1_EnqueueMemoryBlock_W (L1_HubID hubID, L1_Memory-
Block xsppMemoryBlock, L1_BOOL urgent)

static __inline__ L1_ReturnCode L1_EnqueueMemoryBlock_WT (L1_HubID hubID, L1_Memory-
Block xsppMemoryBlock, L1_BOOL urgent, L1_Timeout Timeout)

static __inline_ L1_BYTE x L1_MB_getMemory (L1_MemoryBlock xpMemoryBlock)

static __inline__ L1_UINT32 L1_MB_getNbrOfUsedBytes (L1_MemoryBlock xpMemoryBlock)
static __inline__ L1_UINT32 L1_MB_getSize (L1_MemoryBlock xpMemoryBlock)

static __inline__ void L1_MB_setNbrOfUsedBytes (L1_MemoryBlock xpMemoryBlock, L1_UIN-
T32 nbrOfUsedBytes)

L1_ReturnCode L1_ReturnMemoryBlock_ NW (L1_HubID hubID, L1_MemoryBlock xpMemory-
Block)

void MemoryBlockQueueHub_Ioctl (L1_Hub xhub, L1_Packet xpacket, L1_BYTE ioctl_type)
L1_BOOL MemoryBlockQueueHub_SyncCondition (L1_Hub xhub, L1_Packet «packet)

void MemoryBlockQueueHub_Synchronize (L1_Hub xhub, L1_Packet *packet, L1_Packet *waiting-
Packet)

void MemoryBlockQueueHub_Update (L1_Hub xhub, L1_Packet xpacket)

6.33.1 Detailed Description

The Memory Block Queue (MBQ) Hub offers a zero-copy mechanism to exchange data between two Tasks.

6.33.2 Visual Designer

Figure 6.12: Application Diagram Icon

6.33.2.1 Properties

The Entity has the following Properties:

VirtuosoNext-Designer-1.0.0.0

6.33. MEMORY BLOCK QUEUE HUB 155

* node: The name of the Node to which the Entity is mapped.
* name: Name of the Entity instance.
¢ sizeOfBlocks: The size of the memory blocks the Hub provides, in Bytes.

* nbrOfBlocks: How many memory blocks the Hub provides.

Remarks

SPC Memory Block Queue
SPC Memory Management

6.33.3 Macro Definition Documentation
6.33.3.1 #define L1_isMemoryBlockQueueHub(h) ((h)->HubType == L1_MEMORY_BLOCK_QUEUE)
This macro checks whether or not a Hub is of type MemoryBlockQueue

Returns

¢ O: If the Hub is not a MemoryBlockQueue Hub.
e 1: If the Hub is a MemoryBlockQueue Hub.
6.33.4 Enumeration Type Documentation
6.33.4.1 enum MemoryBlockQueueHub_IOCTL_CODES

IOCTL-codes for the Memory Block Queue Hub.

Enumerator

L1_IOCTL_MBQ_ISR_SEND_BLOCK The data-part of packets with this [OCTL-Code gets copied
into a free Memory-Block and then added to the Queue.

6.33.5 Function Documentation

6.33.5.1 L1_ReturnCode L1_AcquireMemoryBlock_ NW (L1_HubID hubID, 1.1_MemoryBlock xx
ppMemoryBlock)

Tries to acquire a free memory-block from a memory-buffer-queue-hub.

Parameters

hubID | [in] of the Memory-Block-Queue-Hub.

ppMemory- | [inout] Pointer to a pointer to an L1_MemoryBlock, where the pointer to the L1_-
Block | MemoryBlock will be returned to.

Returns

RC_OK Could acquire the Memory Block.
RC_FAIL Could not acquire the Memory Block.

VirtuosoNext-Designer-1.0.0.0

156 CHAPTER 6. MODULE DOCUMENTATION

6.33.5.2 L1_ReturnCode L1_DequeueMemoryBlock (L1_HubID hubiD, 1.1_Packet « packet,
L1_MemoryBlock xx ppMemoryBlock, 1.1_Timeout Timeout)

Sends a Get-Packet containing the pointer to the Memory-Block indicated by ppMemoryBlock to the MB-
Q-Hub. There the Hub checks whether the Memory-Block is of the correct size. If that is not the case the
interaction will return RC_FAIL. Furthermore, the Hub checks whether there is currently a used Memory-
Block available, i.e. if the Hub is currently empty or not. If the Hub is empty the Get-Packet will be inserted
into the waiting list depending on the chosen interaction semantics. Otherwise the Hub will insert the
Memory-Block into the list of free Memory-Blocks, and retrieve a Memory-Block from the full Memory--
Block list. Upon returning ppMemoryBlock will return the pointer to the Memory-Block retrieved from
the free Memory-Block list.

Parameters

hubID | [in] ID of the Memory-Block-Queue-Hub.

packet | [inout] Pointer to the Packet to use to perform the interaction

ppMemory- | [inout] Pointer to a pointer to an L1_MemoryBlock.
Block

Timeout | [in] How long to wait for the execution of the operation.

Returns

RC_OK The Interaction was done successfully.
RC_TO The Interaction timed out.
RC_FAIL The interaction failed.

6.33.5.3 static __inline__ L.1_ReturnCode L1_DequeueMemoryBlock_NW (L1_HubID hubID,
L1_MemoryBlock «x ppMemoryBlock) [static]

Acquires a full Memory-Block from the Memory Block Queue Hub with the ID hubID. The interaction
expects that ppMemoryBlock points to a now free Memory-Block which shall be returned to the hub.

If currently no full Memory-Block is available, the interaction shall return directly and return RC_FAIL.

Parameters

hubID | [in] ID of the Memory-Block-Queue-Hub.

ppMemory- | [inout] Pointer to the full Memory-Block to be enqueued. Upon successful return of
Block | the function this will point to a free Memory-Block.

Returns

RC_OK The interaction was successful, ppMemoryBlock points to the full Memory-Block that was
dequeued.
RC_FAIL The interaction was unsuccessful.

6.33.5.4 static __inline__ L1_ReturnCode L1_DequeueMemoryBlock W (L1_HubID hubiD,
L1_MemoryBlock «x ppMemoryBlock) [static]

Acquires a full Memory-Block from the Memory Block Queue Hub with the ID hubID. The interaction
expects that ppMemoryBlock points to a now free Memory-Block which shall be returned to the hub.

If currently no full Memory-Block is available, the interaction shall wait until a full Memory-Block be-
comes available.

VirtuosoNext-Designer-1.0.0.0

6.33. MEMORY BLOCK QUEUE HUB

157

Parameters

hubID

[in] ID of the Memory-Block-Queue-Hub.

ppMemory-
Block

[inout] Pointer to the full Memory-Block to be enqueued. Upon successful return of
the function this will point to a free Memory-Block.

Returns

RC_OK The interaction was successful, ppMemoryBlock points to the full Memory-Block that was

dequeued.

RC_FAIL The interaction was unsuccessful.

6.33.5.5 static __inline__ L1_ReturnCode L1_DequeueMemoryBlock WT (L1_HubID hubiD,

L1_MemoryBlock *x ppMemoryBlock, 1.1_Timeout Timeout)

[static]

Acquires a full Memory-Block from the Memory Block Queue Hub with the ID hubID. The interaction
expects that ppMemoryBlock points to a now free Memory-Block which shall be returned to the hub.

If currently no full Memory-Block is available, the interaction shall wait until a full Memory-Block be-
comes available, or the timeout expires, before returning.

Parameters

hubID

[in] ID of the Memory-Block-Queue-Hub.

ppMemory-
Block

[inout] Pointer to the full Memory-Block to be enqueued. Upon successful return of
the function this will point to a free Memory-Block.

Timeout

How long the interaction shall wait, in system ticks, to perfrom the interaction.

Returns

RC_OK The interaction was successful, ppMemoryBlock points to the full Memory-Block that was

dequeued.

RC_FAIL The interaction was unsuccessful.
RC_TO The timeout expired.

6.33.5.6 static L1_ReturnCode L1_Drv_Isr_EnqueueMemoryBlock NW (L1_HubID mbq, L.1_Packet

packet, L1 BYTE x buffer, L1_UINT32 dataSize, L1_BOOL urgent)

[inline], [static]

This function inserts the content of the parameter buffer into a Memory Buffer Queue Hub, without the
need to previously allocating a Buffer.

This function returns directly, like an Asynchronous Interaction, but the packet will never be returned to

the ISR.

Parameters

mbq

[in] Is the L1_HubID which identifies the Memory Block Queue Hub, that the calling
ISR wants to enqueue the buffer at.

packet

[inout] Pointer to the L.1_Packet that will be used to represent the interaction.

buffer

[in] Pointer to the buffer that will be enqueued in the Memory Buffer Queue.

dataSize

[in] Size of the buffer to enqueue, in bytes. Must not be larger than the size of the
Memory Blocks handled by the Message Buffer Queue.

VirtuosoNext-Designer-1.0.0.0

158 CHAPTER 6. MODULE DOCUMENTATION

urgent | [in] Indicates whether a message in the Memory-Block is urgent (L1_TRUE) or not
(L1_FALSE). In case of the message being urgent the Memory-Block gets inserted in
the beginning of the list of the list, otherwise it will be enqueued at the end of the list.

Returns

RC_OK The packet could be inserted into the Kernel Input Port.
RC_FAIL The packet could not be inserted into the Kernel Input Port.

Warning

Must not be used with Memory Buffer Queue Hubs located at another Node.
Only to be used within an ISR, not within a Task!

See Also

L1_Drv_Isr_initialisePacket

Remarks

SPC Packets from an ISR

Remarks

SPC Memory Block Queue initial state of MBQ-FullBlocks

6.33.5.7 L1_ReturnCode L1_EnqueueMemoryBlock (L1_HubID hubID, 1.1_Packet * packet,
L1_MemoryBlock «x ppMemoryBlock, L1_BOOL urgent, LL1_Timeout Timeout)

Sends a Put-Packet containing the pointer to the indicated by ppBuffer to the MBQ-Hub. There the Hub
checks whether the Memory-Block has the correct size. If that is not the case the interaction will return R-
C_FAIL. Furthermore, the Hub checks whether there is currently a free Memory-Block available, i.e. if the
Hub is currently full or not. If the Hub is full the Put-Packet will be inserted into the waiting list depending
on the chosen interaction semantics. Otherwise, the Hub will insert the Memory-Block into the list of
used Memory-Blocks, and retrieve a Memory-Block from the free Memory-Block list. Upon returning
ppMemoryBlock will return the pointer to the Memory-Block retrieved from the free Memory-Block list.

Parameters

hubID | [in] ID of the Memory-Block-Queue-Hub.

packet | [inout] Pointer to the Packet to use to perform the interaction

ppMemory- | [inout] Pointer to a pointer to an L1_MemoryBlock.
Block

urgent | [in] Indicates whether a message in the Memory-Block is urgent (L1_TRUE) or not
(L1_FALSE). In case of the message being urgent the Memory-Block gets inserted in
the beginning of the list of the list, otherwise it will be enqueued at the end of the list.

Timeout | How long to wait for the execution of the operation.

Returns

RC_OK The Interaction was done successfully.
RC_TO The Interaction timed out.
RC_FAIL The interaction failed.

VirtuosoNext-Designer-1.0.0.0

6.33. MEMORY BLOCK QUEUE HUB 159

6.33.5.8 static __inline__ L1_ReturnCode L1_EnqueueMemoryBlock_NW (L1_HubID hubID,
L1_MemoryBlock =« ppMemoryBlock, L1_ BOOL urgent) [static]

Enqueues the Memory-Block ppMemoryBlock points to in the MBQ-Hub identified by the parameter hub-
ID. It allows to specify whether the Memory-Block should be inserted at the beginning of the queue (urgent
=L1_TRUE) or at the end (urgent = L1_FALSE). Upon successful return of the function ppMemoryBlock
points to a free Memory-Block which can be used by the Task directly.

If currently no free Memory-Block is available in the Hub, then this function shall return directly with the
return value RC_FAIL.

Parameters

hubID | [in] ID of the Memory Block Queue Hub to interact with.

ppMemory- | [inout] Pointer to the full Memory-Block to be enqueued. Upon successful return of
Block | the function this will point to a free Memory-Block.

urgent | [in] Indicates whether the Memory-Block is urgent (L1_TRUE) or not (L1_FALSE).

Returns

RC_OK The interaction was successful, ppMemoryBlock points to the free Memory-Block to be used
by the Task.
RC_FAIL The interaction was unsuccessful.

6.33.5.9 static __inline__ L1_ReturnCode L1_EnqueueMemoryBlock W (L1_HubID hubiD,
L1_MemoryBlock «x ppMemoryBlock, L1 BOOL urgent) [static]

Enqueues the Memory-Block ppMemoryBlock points to in the MBQ-Hub identified by the parameter hub-
ID. It allows to specify whether the Memory-Block should be inserted at the beginning of the queue (urgent
=L1_TRUE) or at the end (urgent = L1_FALSE). Upon successful return of the function ppMemoryBlock
points to a free Memory-Block which can be used by the Task directly.

If currently no free Memory-Block is available in the Hub, then this function shall wait until a free Memory-
Block becomes available before returning.

Parameters

hubID | [in] ID of the Memory Block Queue Hub to interact with.

ppMemory- | [inout] Pointer to the full Memory-Block to be enqueued. Upon successful return of
Block | the function this will point to a free Memory-Block.

urgent | [in] Indicates whether the Memory-Block is urgent (L1_TRUE) or not (L1_FALSE).

Returns

RC_OK The interaction was successful, ppMemoryBlock points to the free Memory-Block to be used
by the Task.
RC_FAIL The interaction was unsuccessful.

6.33.5.10 static __inline__ L1_ReturnCode L1_EnqueueMemoryBlock_ WT (L1_HubID hubiD,
L1_MemoryBlock =+ ppMemoryBlock, L1_BOOL urgent, L1_Timeout Timeout)
[static]

Enqueues the Memory-Block ppMemoryBlock points to in the MBQ-Hub identified by the parameter hub-
ID. It allows to specify whether the Memory-Block should be inserted at the beginning of the queue (urgent

VirtuosoNext-Designer-1.0.0.0

160

CHAPTER 6. MODULE DOCUMENTATION

=LI1_TRUE) or at the end (urgent = L1_FALSE). Upon successful return of the function ppMemoryBlock
points to a free Memory-Block which can be used by the Task directly.

If currently no free Memory-Block is available in the Hub, then this interaction shall wait until a free
Memory-Block becomes available, or the timeout expires, before returning.

Parameters

hubID

[in] ID of the Memory Block Queue Hub to interact with.

ppMemory-
Block

[inout] Pointer to the full Memory-Block to be enqueued. Upon successful return of
the function this will point to a free Memory-Block.

urgent

[in] Indicates whether the Memory-Block is urgent (L1_TRUE) or not (L1_FALSE).

Timeout

How long the interaction shall wait, in system ticks, to perform the interaction.

Returns

RC_OK The interaction was successful, ppMemoryBlock points to the free Memory-Block to be used

by the Task.

RC_FAIL The interaction was unsuccessful.
RC_TO The timeout expired.

6.33.5.11 static __inline__ L1 _BYTEx L1_MB_getMemory (L1_MemoryBlock « pMemoryBlock)
[static]

Returns the pointer to the first byte of the data-part of the Memory-Block indicated by pMemoryBlock.

Parameters

\ pMemoryBlock \ [in] Pointer to the Memory-Block from which to acquire the data-part.

Returns

Pointer to the first byte of the data-part of the Memory-Block.

6.33.5.12 static __inline__ L1_UINT32 L1_MB_getNbrOfUsedBytes (L1_MemoryBlock « pMemoryBlock)
[static]

Returns the number of bytes currently used in the Memory-Block pointed to by pMemoryBlock.

Parameters

‘ pMemoryBlock ‘ [in] Pointer to the Memory-Block from which to get the number of used bytes.

Returns

The number of bytes used in the Memory-Block.

See Also

L1_MB_setNbrOfUsedBytes

VirtuosoNext-Designer-1.0.0.0

6.33. MEMORY BLOCK QUEUE HUB 161

6.33.5.13 static __inline__ L1_UINT32 L1_MB_getSize (L1_MemoryBlock « pMemoryBlock)
[static]

Returns the maximum number of bytes the Memory-Block pointed to by pMemoryBlock can store.

Parameters

| pMemoryBlock | [in] Pointer to the Memory-Block from which to get the size.

Returns

The maximum number of bytes the Memory-Block can store.

6.33.5.14 static __inline__ void L1_MB_setNbrOfUsedBytes (L.L1_MemoryBlock « pMemoryBlock,
L1_UINT32 nbrOfUsedBytes) [static]

Sets the number of bytes currently used in the Memory-Block pointed to by pMemoryBlock.

Parameters

pMemoryBlock | [in] Pointer to the Memory-Block where to set the number of used bytes.

nbrOfUsed- | [in] The the value of used bytes to be set in the Memory-Block.
Bytes

See Also
L1_MB_getNbrOfUsedBytes

6.33.5.15 L1_ReturnCode L1_ReturnMemoryBlock_NW (L1_HubID hubID, 1.1_MemoryBlock x
pMemoryBlock)

Returns the MemoryBlock pointed to by pMemoryBlock to the Memory Block Queue Hub with the ID
hubID.

Parameters

hubID | [in] of the Memory-Block-Queue-Hub.

pMemoryBlock | [in] Pointer to the Memory-Block to return to the Hub.

Returns

RC_OK Could return the Memory Block.
RC_FAIL Could not return the Memory Block.

6.33.5.16 void MemoryBlockQueueHub _loctl (L.1_Hub « hub, 1.1_Packet = packet, L1_BYTE ioctl_type)

VirtuosoNext-Designer-1.0.0.0

162 CHAPTER 6. MODULE DOCUMENTATION

Parameters

hub | Pointer to a Hub of type LI_MEMORY_BLOCK_QUEUE.

packet | Pointer to the L1_Packet which caused the function to be called. It will contain addi-
tional information.

ioctl_type | The command code, the following command exist:

e L1_IOCTL_HUB_OPEN: Initialised the Hub, only used by the Kernel-Task.

e L1_IOCTL_MBQ_ACQUIRE_BLOCK: Tries to acquire a Memory Block from
the list of free Memory Blocks.

e L1_IOCTL_MBQ_RETURN_BLOCK: Returns a Memory Block to the list of
free Memory Blocks.

* L1_IOCTL_MBQ_ISR_SEND_BLOCK: Copies the data in the data-part of the
L1_Packet to a free Memory Block and inserts it into the list of used Memory
Blocks.

See Also

L1_AcquireMemoryBlock_ NW
L1_ReturnMemoryBlock_NW
L1_Drv_Isr_EnqueueMemoryBlock_ NW

6.33.5.17 L1_BOOL MemoryBlockQueueHub_SyncCondition (L1_Hub « hub, L1_Packet * packet)

Parameters

hub | Pointer to a Hub of type L1_MEMORY_BLOCK_QUEUE.

packet | Pointer to the L1_Packet which caused the function to be called. It will contain addi-
tional information.

Returns

L1_TRUE The request in the L1_Packet packet results in synchronisation and the Hub-State shall be
updated.

L1_FALSE The request in the L1_Packet packet, either does not result in synchronisation (packet-
>Status := RC_OK) or is incorrect (packet->Status := RC_FAIL).

6.33.5.18 void MemoryBlockQueueHub_Synchronize (L1_Hub x hub, L1_Packet « packet, L1_Packet
« waitingPacket)

This function shall synchronise the two complementary requests in the L.1_Packets packet and waiting-
Packet. It shall first check whether or not the request in packet is valid.

If the request in the L1_Packet packet is valid, it shall update the Hub-State using it, before updating the
Hub-State using the L1_Packet waitingPacket. Afterwards it shall return both Packets to their Tasks.

If the request in the L1_Packet packet is invalid, the function shall raise an error (packet->Status := RC_-
FAIL) and return packet to its Task. The function shall then reinsert the L1_Packet waitingPacket into the
Hub WaitingList.

VirtuosoNext-Designer-1.0.0.0

6.34. HARDWARE ABSTRACTION LAYER 163

Parameters

hub | Pointer to a Hub of type L1_MEMORY_BLOCK_QUEUE.

packet | Pointer to the newly arrived L1_Packet.

waitingPacket | Pointer to the L1_Packet which is complementary to the one in the parameter packet.

Precondition

hub NOT NULL
packet NOT NULL
waitingPacket NOT NULL

6.33.5.19 void MemoryBlockQueueHub_Update (L1_Hub * hub, L1_Packet « packet)
This function shall handle Put- and Get-Packets and update the state of the Hub accordingly.

Parameters

hub | Pointer to a Hub of type LI_MEMORY_BLOCK_QUEUE.

packet | Pointer to the L1_Packet which contains the request that results in updating the state of
the Memory Block Queue Hub.

6.34 Hardware Abstraction Layer

Functions

¢ void L1_deinitializeContextOfTask (L1_TaskControlRecord xTaskCR)

¢ void L1_enterCriticalSection (void)

e void L1_enterISR (void)

e L1_UINT32 L1_hal_SMP_getCoreNumber (void)

¢ void L1_initializeContextOfTask (L1_TaskControlRecord xTaskCR)

e void L1_initializePlatform (L1_UINT32 NodeNumberOfTasks)

¢ void L1_leaveCriticalSection (void)

e void L1_leavelSR (void)

* void L1_restoreStatusRegister (L1_INTERRUPT_STATUS msr)

e L1_INTERRUPT_STATUS L1_saveStatusRegister (void)

e void L1_startTasks (void)

 void L1_switchContext (L1_TaskControlRecord *Task2Preempt, L1_TaskControlRecord *TaskC-
R2Restore)

6.34.1 Detailed Description

This is the interface between the Kernel and the hardware specific platform.

6.34.2 Function Documentation
6.34.2.1 void L1_deinitializeContextOfTask (L1_TaskControlRecord « TaskCR)

Platform dependent clearance and removal of CPU context of a task.

VirtuosoNext-Designer-1.0.0.0

164 CHAPTER 6. MODULE DOCUMENTATION

Parameters

TaskCR | Reference to the Task Control Record for which the CPU context should be cleared or
removed.

Example:

void Ll _deinitializeContextOfTask (
L1_TaskControlRecord xTaskCR)

L1_TaskContext *TaskContext = TaskCR->Context;

// Free all storage and reset any context fields
// here or in Ll_initializeContextOfTask

TaskContext->State = TASK_CONTEXT_STATE_TERMINATED;

Remarks

Function called in response to a L1_StopTask_W service. Function can be empty if the context is
never changed or if it is followed by a L1_initializeContextOfTask

See Also

L1_StopTask_W

6.34.2.2 void L1_enterCriticalSection (void)

Synchronization to ensure a single source to access a piece of code or object, i.e. for single entrant code.
Platform dependent support to implement an atomic operation or mutex. Paired with L1_leaveCritical-
Section().

Used to protect:

* Manipulations of the Kernel Input Port waiting list

* Manipulations of Rx driver packet pool

Warning

Should not be used in new code, instead use L1_saveStatusRegister()

6.34.2.3 void L1_enterISR (void)

Platform dependent prologue of an interrupt service routine.
In most platforms this function does not exist but is part of the Interrupt Controller Driver.

Example:

VirtuosoNext-Designer-1.0.0.0

6.34. HARDWARE ABSTRACTION LAYER 165

void Ll_enterISR(void)
{
// push registers onto the stack
// save the task context if not yet done so
enter critical section for nested interrupts
L1_TISRNesting++;
if (LO_ISRNesting == 1) {
// save context
// switch to ISR context

leave critical section for nested interrupts

Remarks

It is recommended to use a separate context and stack for ISRs.

6.34.2.4 L1_UINT32 L1_hal_SMP_getCoreNumber (void)

Returns the Core-ID of the Core this function is executed on. It is used in SMP-System to emulate Virtuoso-
Next standard MP behaviour, i.e. one Kernel per core.

Returns

The number of the core, starting from O.

6.34.2.5 void L1_initializeContextOfTask (L1_TaskControlRecord * TaskCR)
Platform dependent creation and initialization of CPU context of a task.

Parameters
\ TuskCR | Reference to the Task Control Record for which the CPU context should be initialized. |

Example:

void Ll_initializeContextOfTask (L1l_TaskControlRecord =
TaskCR)

L1_TaskContext * TaskContext;
TaskContext = TaskCR->Context;

// Configure the Stack to call so that loading the context
// causes the function L1_runTask() to be called.

// initialize all context fields

VirtuosoNext-Designer-1.0.0.0

166 CHAPTER 6. MODULE DOCUMENTATION

Remarks

Function called by L1_initializePlatform and in response to a L1_StartTask_W service.

See Also

L1_StartTask W
L1_initializePlatform

6.34.2.6 void L1 _initializePlatform (L1_UINT32 NodeNumberOfTasks)

Remarks

SPC HAL API Specification

Global platform initialization and creation of all tasks and CPU contexts. The function is called when
starting VirtuosoNext to provide any platform dependent initialization and creation of tasks.

Parameters

NodeNumber- | The number of Tasks on this node, which need to be initialised using the function L1_-
OfTasks | initializeContextOfTask.

See Also

L1_initializeContextOfTask
Example:

//Initialize ISR context, if any
L1 _IsrStackPtr = ...;

// Initialize application tasks
for (1 = 0; i < NodeNumberOfTasks; i++) {
if (L1_TaskControlBlock[i].TaskState == L1_STARTED) {
Ll _initializeContextOfTask (& (L1_TaskControlBlock[i]));

6.34.2.7 void L1 _leaveCriticalSection (void)

Synchronization to re-allow multiple sources to access a piece of code and reentrant code. Platform depen-
dent support to implement an atomic operation or mutex. Paired with L1_enterCriticalSection.

Used to protect:
* Manipulations of the Kernel Input Port waiting list

* Manipulations of Rx driver packet pool

Warning

Should not be used in new code, instead use L1_restoreStatusRegister()

VirtuosoNext-Designer-1.0.0.0

6.34. HARDWARE ABSTRACTION LAYER

6.34.2.8 void L1_leavelSR (void)

Platform dependent epilogue of an interrupt service routine.
In most platforms this function does not exist but is part of the Interrupt Controller Driver.

Example:

Ll_leaveISR(void) {
enter critical section for nested interrupts

L1_ISRNesting-—;
if (L1_ISRNesting == 0) {
if (L1_CurrentTaskCR == L1_KernelTaskCR) {
// only if in process of deschedule
L1_ScheduleRequest = L1_TRUE;
TaskCR2Restore = L1_CurrentTaskCR;
} else if (Ll_ScheduleRequest == L1_TRUE) {
// requested by a user task

// leave it up to normal flow, since task is about to switch to KernelTas

} else {

switch to kerr

// we are in a user task, not in a kernel request service,

L1l_ScheduleRequest = L1_FALSE;
// restore and switch context

L1_switchContext (L1_CurrentTaskCR, L1_KernelTaskCR)

}

// return

// resumed the suspended thread again, or other and finish processing this I¢

} else {

// nested interrupts, switch context when returning from first/original ISR

// normal flow
restore context

leave critical section for nested interrupts
// pop registers from the stack

Remarks

It is recommended to use a separate context and stack for ISRs

6.34.2.9 void L1_restoreStatusRegister (L1_INTERRUPT_STATUS msr)

Restoring of current machine status info, e.g. interrupt mask, and leaving of critical section for context

switch as a side-effect. Paired with L1_saveStatusRegister.

Parameters

\ msr \ Platform dependent status information, e.g. interrupt mask.

VirtuosoNext-Designer-1.0.0.0

168 CHAPTER 6. MODULE DOCUMENTATION

Warning

The parameter msr must be a return value from L1_saveStatusRegister.

Remarks

Called with value returned from L1_saveStatusRegister
Should be used instead of L1_leaveCriticalSection in new code.

6.34.2.10 L1_INTERRUPT_STATUS L1_saveStatusRegister (void)

Retrieving of current machine status info, e.g. interrupt mask, and entering of critical section for context
switch as a side-effect. Paired with L1_restoreStatusRegister.

Example

L1_INTERRUPT_STATUS L1_saveStatusRegister (void)

{
L1_INTERRUPT_STATUS status;
status = SREG; // get Status Register
disable interrupts
return status;

Returns

The value of the MSR before interrupts got disabled.

Remarks

Return value used as argument to L1_restoreStatusRegister.
Should be used instead of L1_enterCriticalSection in new code.

6.34.2.11 void L1_startTasks (void)

Platform dependent function to start execution of the VirtuosoNext tasks on the CPU. The context of the
first task to start should be loaded, and the CPU resources given to that task (typically the Kernel Task).

Example:

void L1l_startTasks (void)
{
L1_CurrentTaskCR = L1_KernelTaskCR;
Stack2SwitchON = L1_CurrentTaskCR->Context—->StackPtr;

// load context
load the new stack pointer Stack2SwitchON
pop registers from the stack

VirtuosoNext-Designer-1.0.0.0

6.35. INTERNAL KERNEL API 169

6.34.2.12 void L1_switchContext (L1_TaskControlRecord x Task2Preempt, 1.1_TaskControlRecord
TaskCR2Restore)

Platform dependent function to yield execution to another task to run on the CPU.

The context of the task to pre-empt should be saved, and the context of the task to resume should be
restored. The CPU resources will then be given to the restored task.

Parameters

Task2Preempt | Reference to the Task that will yield its execution (typically L1_CurrentTaskCR)

TaskCR2- | Reference to the Task that will resume execution.
Restore

Example:

void L1_switchContext (L1_TaskControlRecord * Task2Preempt,
L1 _TaskControlRecord *= Task2Restore)

Stack2SwitchON = Task2Restore->Context->StackPtr;
Stack2SwitchOFF = & (Task2Preempt->Context->StackPtr);
L1_CurrentTaskCR = Task2Restore;

// save context

push registers on the stack

store the current stack pointer Stack2SwitchOFF
// load context

load the new stack pointer Stack2SwitchON

pop registers from the stack

Remarks

VirtuosoNext selects the task to restore. Function is called from within a L1_enterCriticalSection /
L1_leaveCriticalSection pair.

See Also

L1_saveStatusRegister
L1_restoreStatusRegister

6.35 Internal Kernel API

Data Structures

e struct _struct_L1 Port_

e struct L1_TaskControlRecord
Macros

o #define L.1_id2localport(p) (&L1_LocalPorts[((p) & ~L1_GLOBALID_MASK)])

VirtuosoNext-Designer-1.0.0.0

170 CHAPTER 6. MODULE DOCUMENTATION

#define L.1_isLocalPortID(p) (((p) & L1_GLOBALID_MASK) == ((L1_KernellnputPortID) & L1-
_GLOBALID_MASK))

#define L1_isLocalTaskID(tid) (((tid) & L1_GLOBALID_MASK) == ((L1_KernelTaskID) & L1_-
GLOBALID_MASK))

¢ #define L1_PortNodeID(p) (((p) & L1_GLOBALID_MASK) >> 8)

 #define L1_thisNodelD ((L1_NodeID)((L1_KernelTaskID) & L.1_GLOBALID_MASK))

Typedefs

¢ typedef struct _struct_L1_Port_ L1_InputPort

Enumerations

e enum L1_TaskStatus { L1_INACTIVE, L1_STARTED, L1_ABORTED }

Functions

¢ void inputPortService (L1_InputPort «Port, L1_Packet «Packet)

* void L1_abortTaskService (L1_Packet xpacket)

* void L1_anyPacketService (L1_Packet «Packet)

e L1_ReturnCode L.1_buildAndInsertPacket (L1_PortID PortID, L1_Packet xPacket, L1_UINT16 Service-
ID, L1_Timeout Timeout)

* void L1_changeTaskPriority (L1_TaskControlRecord *TaskCR, L1_Priority newPriority)

* void L1_idleTask (L1_TaskArguments Arguments)

¢ void L1_initLinkDriver (void)

 void L1_KernelEntryPoint (L1_TaskArguments Arguments)

* void L1_KernelLoop (void)

* L1_Packet * L1_KernelPacketPool_getPacket (void)

e static void L1_List_insertTask (L1_List *list, L1_TaskControlRecord *taskCR)

e static void L1_List_removeTask (L1_TaskControlRecord xtaskCR)

* void L1_makeTaskReady (L.1_TaskControlRecord *TaskCR)

¢ void L1_remoteService (L1_Packet xPacket)

* void L1_resetTimer (L1_Packet xwaitingPacket)

¢ void L1_resumeTaskService (L1_Packet «Packet)

¢ void L1_returnPacketService (L1_Packet xPacket)

¢ void L1_returnToTask (L1_Packet *Packet)

e int L1_runRTOS (void)

¢ void L1_runTask (L1_TaskControlRecord *taskCR)

e static int L1_runVirtuosoNext (L1_UINT32 nbrOfTasks, L1_UINT32 nbrOfHubs)

e L1_ReturnCode L1_setTimer (L1_Packet xPacket)

e void L1_startTaskService (L1_Packet xPacket)

* void L1_stopTaskService (L1_Packet *Packet)

* void L1_suspendTaskService (L1_Packet «Packet)

¢ void L1_timerPacketService (L1_Packet xPacket)

 void L1_timerPacketService_tick (L1_Packet spacket)

Variables

e L1_TimerList L1_NodeTimerTimeoutList

VirtuosoNext-Designer-1.0.0.0

6.35. INTERNAL KERNEL API 171

6.35.1 Detailed Description

Remarks

SPC Kernel Internal API

6.35.2 Macro Definition Documentation
6.35.2.1 #define L1_id2localport(p) (&L1_LocalPorts[((p) & ~L1_GLOBALID_MASK)])

Converts the Port ID p to a pointer to the Hub on the local Node.

Parameters

\ p | The Port ID to be converted.

Returns

The pointer to the L1_IntputPort identified by the Port ID p.

Warning

This function does not check whether this Port ID identifies a local Port. For this the developer must
use L1_isLocalPortID().

See Also

L1_isLocalPortID

6.35.2.2 #define L1_isLocalPortlD(p) (((p) & L1_GLOBALID_MASK) == ((L1_KernellnputPortID) &
L1_GLOBALID_MASK))

Checks whether or not the L1_InputPort identified by parameter p is on this Node, i.e. is locally available.

Parameters

‘ p | The Port ID to be checked.

Returns

L1_TRUE The p identifies an Input Port on this Node.
L1_FALSE Otherwise.

6.35.2.3 #define L1_isLocalTaskID(tid) (((tid) & L1_GLOBALID_MASK) == ((L1_KernelTaskiID) &
L1_GLOBALID_MASK))

Checks whether or not the Task identified by parameter tid is on this Node, i.e. is locally available.

VirtuosoNext-Designer-1.0.0.0

172 CHAPTER 6. MODULE DOCUMENTATION

Parameters

‘ tid | The Task ID to be checked.

Returns
L1_TRUE The Task ID tid identifies a Task on this Node.

L1_FALSE Otherwise.
6.35.2.4 #define L1_PortNodelD(p) (((p) & L1_GLOBALID_MASK) > > 8)

Extracts the Node ID part from the Port ID p.

Parameters

\ p | The Port ID from which to extract the Node ID part.

Returns
Node ID part of the Port ID p.

6.35.2.5 #define L1_thisNodelD ((L1_NodelD)((L1_KernelTaskiD) & L1_GLOBALID_MASK))

The Node-ID of this Node.

6.35.3 Typedef Documentation

6.35.3.1 typedef struct _struct_L1_Port_ L1_InputPort

Remarks
SPC Input Port
This structure represents a Task Input Port (TIP), which is used to pass L1_Packets to the Kernel Task or

Link Driver Tasks for processing. In case of Asynchronous Interactions the Task Input Port contains the
Asynchronous Packets that have been returned to the Task.

6.35.4 Enumeration Type Documentation
6.35.4.1 enum L1_TaskStatus

L1_TaskStatus is an enumeration type used to specify the state of a Task.

Remarks

SPC Task states

Enumerator

LI1_INACTIVE State of a task which is not started when system boots, or which has been stopped.

L1_STARTED State of a task which has been started when system boots, or which has been started
by start task service.

L1_ABORTED State of a task that caused an exception to be triggered. Only used while the Abort--
Handler is or will be active.

VirtuosoNext-Designer-1.0.0.0

6.35. INTERNAL KERNEL API 173

6.35.5 Function Documentation
6.35.5.1 void inputPortService (L1_InputPort « Port, L1_Packet « Packet)

Performs the synchronisation of the L1_Packets in a Task-Input-Port.

Parameters

Port | Pointer to the Input-Port to synchronise.

Packet | Pointer to the L1_Packet to process.

6.35.5.2 void L1_abortTaskService (L1_Packet x packet)

Given a Request-Packet of a Task this function will abort the Task that owns the Request-Packet.

Parameters

packet | Pointer to the Request-Packet of the Task that should be aborted. The field errorCode
shall be set to the reason for the abort.

See Also

L1_Drv_Isr_abortTask

6.35.5.3 void L1_anyPacketService (L1_Packet x Packet)
This service gets invoked by the Kernel if a Task is waiting for an L.1_Packet to be placed in it’s Input--
Port. This function only returns once there is an L.1_Packet in the input Port of the Task identified by

Packet->DestinationPortID, or the Timeout expired.

Parameters

‘ Packet ‘ Pointer to the L1_Packet to be processed.

Postcondition

Packet->Data[0-4] contain the pointer to the L1_Packet that was inserted into the Input-Port of the
Task.

6.35.5.4 L1_ReturnCode L1 _buildAndinsertPacket (L1_PortlD PortiD, 1.1_Packet « Packet, L1_UINT16
ServicelD, 1L.1_Timeout Timeout)

Configures the L1_Packet identified by the parameter Packet, with values of the PortID, ServicelD, and
Timeout. The packet is then inserted into the Kernel-Input-Port and a context switch gets performed to the
Kernel-Task to process the Packet.

VirtuosoNext-Designer-1.0.0.0

174

CHAPTER 6. MODULE DOCUMENTATION

Parameters

PortID

The ID of the Port the Packet should be sent to.

Packet

Pointer to the Packet to send.

ServicelD

The Service ID of the Packet, must be a value defined in L1_ServicelD.

Timeout

The amount of ticks the Packet should wait for the Interaction to take place.

Returns

The function returns the return value of the interaction:

¢ RC_OK The interaction was successful.
¢ RC_FAIL The interaction failed.
¢ RC_TO The timeout expired.

6.35.5.5 void L1_changeTaskPriority (L1_TaskControlRecord * TaskCR, L1_Priority newPriority)

This function changes the priority of the Task identified by TaskCR to the value of newPriority. If the Task
is currently on the Ready-List it will be reinserted into it to ensure that the new priority is reflected.

Parameters

TaskCR

Pointer to the Task Control Record of the Task to adjust the priority of.

newPriority

The new priority the Task should have.

6.35.5.6 void L1_idleTask (L1_TaskArguments Arguments)

This is a forward declaration of the idle task given in the user’s project. It is the lowest priority task in the
system. Usually implemented as an infinite loop that ignores the arguments received where performance
metrics may be performed.

Parameters

‘ Arguments ‘ function implementation dependent.

6.35.5.7 void L1_initLinkDriver (void)

This function shall be defined by every Node of a Multi Node (MP) System. Its purpose is to establish the
links between this Node and its neighbor Nodes.

6.35.5.8 void L1_KernelEntryPoint (L1_TaskArguments Arguments)

This function initializes the system timer, initializes the link drivers in MP mode, and starts the Kernel loop

function.

Parameters

‘ Arguments ‘ The arguments passed to this function are ignored.

VirtuosoNext-Designer-1.0.0.0

6.35. INTERNAL KERNEL API 175

6.35.5.9 void L1_KernelLoop (void)
This function represents the Kernel-Task. It performs packet-switching on incoming L1_Packets routing

them either to a local Hub, a local Task, or another Node for processing. If there are no L1_Packets to
process, it deschedules.

6.35.5.10 L1_Packet« L1_KernelPacketPool getPacket (void)
Allocates a Packet from the KernelPacketPool and returns a pointer it.

Returns

NULL indicates that no packet could be allocated
INULL is the pointer to the L1_Packet that was allocated from the KernelPacketPool.

6.35.5.11 static void L1_List_insertTask (L1_List « list, L.1_TaskControlRecord * faskCR)
[inline], [static]

Inserts a the L1_TaskControlRecord identified by taskCR into the L1_List identified by list

Parameters

list | Pointer to the L1_List where task shall be inserted.

taskCR | Pointer to the L1_TaskControlRecord that shall be inserted into the L1_List list.

Precondition

list NOT NULL
taskCR NOT NULL
taskCR is not element of any L1_List.

Postcondition

taskCR is element of the L1_List list.

6.35.5.12 static void L1_List_removeTask (L1_TaskControlRecord * taskCR) [inline],
[static]

Removes the L1_TasckControlRecord identified by taskCR from the list it is element of, if any.

Parameters

taskCR | Pointer to the L1_TaskControlRecord that shall be removed from the list it is element
of.

Precondition
taskCR NOT NULL

Postcondition

taskCR is not any longer element of any L1_List.

VirtuosoNext-Designer-1.0.0.0

176 CHAPTER 6. MODULE DOCUMENTATION

6.35.5.13 void L1_makeTaskReady (L.1_TaskControlRecord * TaskCR)

Makes the Task identified by the parameter TaskCR ready. This means that it adds the TaskCR to the
Ready-List.

Parameters

‘ TaskCR ‘ Pointer to the Task Control Record of the Task which should be made ready.

Precondition
* TaskCR must belong to a local Task.
* TaskCR must not be on the Ready-List

Postcondition
» TaskCR is on the Ready-List.

6.35.5.14 void L1_remoteService (L1_Packet « Packet)

Routes the L1_Packet, identified by the parameter Packet, to the corresponding Driver-Task.

Parameters

\ Packet \ Pointer to the L1_Packet to be routed to the corresponding Driver-Task.

Warning

If the Driver-Task is inactive the Packet gets discarded.

6.35.5.15 void L1_resetTimer (L.1_Packet « waitingPacket)

Cancels the timeout for the L1_Packet, identified by the parameter waitingPacket.

Parameters

‘ waiting Packet ‘ Pointer to the L1_Packet for which to cancel the timeout.

6.35.5.16 void L1_resumeTaskService (L.1_Packet = Packet)

This function resumes the task that has the destination ID of the Packet. A task that is in the suspended
state will be resumed.

Parameters

‘ Packet ‘ The task that has the id of the destination ID field of this packet will be resumed.

VirtuosoNext-Designer-1.0.0.0

6.35. INTERNAL KERNEL API 177

6.35.5.17 void L1_returnPacketService (L1_Packet x Packet)

This service gets triggered when a Remote Node returns an L1_Packet to the local node. This service then
takes care to return the Packet to the correct Task and make it ready if necessary.

Parameters

\ Packet | Pointer to the L1_Packet to return to its Task.

6.35.5.18 void L1 _returnToTask (L.1_Packet « Packet)
This function returns an L1_Packet to the Task that owns it. If the Task is currently not ready to be run,
it will be added to the Ready-List. If the Packet is from a remote Node this function will route it to the

correct Link-Driver.

Parameters

\ Packet | Pointer to the L1_Packet to return to its Task.

6.35.5.19 int L1_runRTOS (void)
This function starts the RTOS. The function initializes platform specific hardware, initializes the key list
for priority inheritance, initializes the hubs in the node by setting the HubControlFunction, and initializes

the ready list. After that it starts the tasks in the system. It inserts all the tasks whose state field is L1_ST-
ARTED into the ready list and starts the kernel task.

Returns

int -1 when there is a problem. 0 when it all went fine.

6.35.5.20 void L1_runTask (L1_TaskControlRecord = faskCR)

Given a task control record, the function initializes the sequence number of the request packet and starts
the entry point function with the arguments pointed by the control block structure.

Parameters

‘ taskCR ‘ is a pointer to the task control record of the Task to be run.

Remarks

SPC Task arguments

6.35.5.21 static int L1_runVirtuosoNext (L1_UINT32 nbrOfTasks, L1_UINT32 nbrOfHubs) [inline],
[static]

This function starts the RTOS. It takes the number of tasks and hubs as parameter.

VirtuosoNext-Designer-1.0.0.0

178 CHAPTER 6. MODULE DOCUMENTATION

Parameters

nbrOflasks | How many Tasks are on the Node.

nbrOfHubs | How many Hubs are on the Node.

Returns

int -1 when there is a problem. 0 when it all went fine.

6.35.5.22 L1_ReturnCode L1_setTimer (L1_Packet « Packet)

This function inserts the L1_Packet, identified by the parameter Packet, into the Timer-List. j

Parameters

‘ Packet ‘ Pointer to the L1_Packet which should be inserted into the Timer-List.

Returns
L1_ReturnCode
* RC_OK If the Packet could be inserted into the Timer-List.
¢ RC_FAIL If the Packet could not be inserted into the Timer-List.

6.35.5.23 void L1_startTaskService (L1_Packet « Packet)

This function starts the task that has the destination ID of the Packet. If the task is inactive, it initializes
the task context and sets its state to L1_STARTED. The task is made ready and the kernel is instructed to
return to task.

Parameters

‘ Packet ‘ The task that has the id of the destination ID field of this packet will be started.

6.35.5.24 void L1_stopTaskService (L1_Packet « Packet)

This function stops the task that has the destination ID of the Packet. If the task is ready, it removes the
task from the ready list. Otherwise it removes the task’s packet from any waiting list and the suspended
field is set to false to be able to start the task again. A task that is stopped is set to the L1_INACTIVE state.

Parameters

\ Packet \ The task that has the id of the destination ID field of this packet will be stopped

VirtuosoNext-Designer-1.0.0.0

6.35. INTERNAL KERNEL API 179

6.35.5.25 void L1_suspendTaskService (L1_Packet x Packet)
This function suspends the task that has the destination ID of the Packet.

Parameters

\ Packet \ The task that has the id of the destination ID field of this packet will be suspended.

6.35.5.26 void L1_timerPacketService (L1_Packet x Packet)

This service handles any incoming timer related tasks. It either suspends or wakes up a Task, depending on
the requested Service in field Packet->ServicelD.

Parameters

‘ Packet ‘ Pointer to the L1_Packet which contains the request.

6.35.5.27 void L1_timerPacketService_tick (L1_Packet * packet)

This function is meant to be called by the periodic ticker timers, whenever a tick occurred.

The function will inject an L1_Packet into the Kernel Input Port to inform the Kernel-Task about the tick.

Parameters

\ packet | Pointer to the L1_Packet to inject into the Kernel.

Warning

The ISR shall afterwards schedule the Kernel-Task.

Returns

6.35.6 Variable Documentation
6.35.6.1 L1_TimerList L1_NodeTimerTimeoutList

This list contains all timeouts registered at this node.

VirtuosoNext-Designer-1.0.0.0

Chapter 7

Data Structure Documentation

7.1 _struct L1 _DataQueueElement_ Struct Reference

#include <L1_hub_data_gqueue.h>

Data Fields

« L1 BYTE x data
e L1 _UINT16 dataSize

7.1.1 Detailed Description

This structure represents an Element in the FIFO-Hub. It buffers the data given to it.

7.1.2 Field Documentation
7121 L1.BYTEx data

The data stored in this

7.1.2.2 L1_UINT16 dataSize

Number of bytes that are used in the field Data

The documentation for this struct was generated from the following file:

¢ include/kernel/hubs/L.1_hub_data_queue.h

7.2 _struct L1 _DataQueueState Struct Reference

#include <L1_hub_data_gueue.h>

182 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

Data Fields

e L1_UINT16 count

¢ L1_DataQueueElement * elements
e const L1_UINT16 elementSize

e L1_UINTI16 head

e const L1_UINT16 nbrOfElements
e L1_UINTI6 tail

7.2.1 Detailed Description

State of a DataQueue-Hub.

7.2.2 Field Documentation
7.2.2.1 L1_UINT16 count

Current number of used elements of the array Buffer.

7.2.2.2 L1_DataQueueElementx elements

Array of L1_DataQueueElements which are used to store the data passed to the DataQueue-Hub.

7.2.2.3 const L1_UINT16 elementSize

The number of bytes each L1_DataQueueElement can store.

7224 L1_UINT16 head

Index of the Head element in the array Buffer.

7.2.2.5 const L1_UINT16 nbrOfElements

Number of L1_DataQueueEntry elements the field elements points to.

7.2.2.6 L1_UINT16 tail

Index of the Tail element in the array Buffer.

The documentation for this struct was generated from the following file:

* include/kernel/hubs/L1_hub_data_queue.h

7.3 _struct L1 _EventState Struct Reference

#include <L1l_hub_event.h>

VirtuosoNext-Designer-1.0.0.0

7.4. STRUCT_L1_FIFOSTATE STRUCT REFERENCE

183

Data Fields

e L1_BOOL isSet

7.3.1 Detailed Description
The state of an Event-Hub.

Remarks

SPC Event state variable

7.3.2 Field Documentation
7.3.2.1 L1_BOOL isSet

Indicates whether or not the Event-Hub is signaled.

The documentation for this struct was generated from the following file:

e include/kernel/hubs/L1_hub_event.h

7.4 _struct L1 _FifoState_Struct Reference

#include <L1l_hub_fifo.h>

Data Fields

¢ LL1_PacketData **const Buffer
L1_UINT16 Count

¢ L1_PacketData *xconst DataParts
L1_UINT16 Head

e const L1_UINT16 Size
L1_UINT16 Tail

7.4.1 Detailed Description
State of a FIFO-Hub.

Remarks

SPC FIFO state variables

7.4.2 Field Documentation

7.4.2.1 L1_PacketDataxx* const Buffer

Array of Pointers to L1_PacketData elements used to exchange data between Tasks and the FIFO.

VirtuosoNext-Designer-1.0.0.0

184 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

7.4.22 L1_UINT16 Count

Current number of used elements of the array Buffer.

7.4.2.3 L1_PacketDatax const DataParts

Array of L1_PacketData elements which are used to store the data passed to the FIFO-Hub.

7.4.24 L1_UINT16 Head

Index of the Head element in the array Buffer.

7.4.25 constL1_UINT16 Size

Number of L1_FifoData elements the array Buffer contains.

Remarks

SPC Configurable FIFO-Size

7.4.26 L1_UINT16 Tail

Index of the Tail element in the array Buffer.

The documentation for this struct was generated from the following file:

¢ include/kernel/hubs/L1_hub_fifo.h

7.5 _struct L1 _Hub_ Struct Reference

#include <Ll _hub.h>

Data Fields

 const L1_HubControlFunction HubControlFunction

* const void * HubState

 const L1_HubSyncConditionFunction HubSyncConditionFunction
* const L1_HubSynchronizeFunction HubSynchronizeFunction
 const L1_ServiceType HubType

* const L1_HubStateUpdateFunction HubUpdateFunction

e L1_List WaitingList

7.5.1 Detailed Description

Generic Hub State Structure.

VirtuosoNext-Designer-1.0.0.0

7.6. _STRUCT_L1_MEMORYBLOCK_STRUCT REFERENCE 185

7.5.2 Field Documentation
7.5.2.1 const L1_HubControlFunction HubControlFunction

Pointer to the Hub-Control function for this Hub. If not used this may be NULL.

7.5.2.2 const voidx HubState

Pointer to the Hub specific data. If not used this may be NULL.

7.5.2.3 const L1_HubSyncConditionFunction HubSyncConditionFunction

Pointer to the Hub-SyncCondition function for this Hub. If not used this may be NULL.

7.5.24 const L1_HubSynchronizeFunction HubSynchronizeFunction

Pointer to the Hub-Synchronize function for this Hub, this function gets called, the Generic Hub, when it
has a pair of Get- and Put-Packets, i.e. achieved synchronisation. If not used this may be NULL.

7.5.2.5 const L1_ServiceType HubType

The type of hub this structure belongs to. This is relevant to ensure that the field HubState can be casted to
the correct type.

7.5.2.6 const L1_HubStateUpdateFunction HubUpdateFunction

Pointer to the Hub-Update function for this Hub. If not used this may be NULL.

7.5.2.7 L1_List WaitingList

On this list any L1_Packet that currently does not result in a synchronisation is kept.

The documentation for this struct was generated from the following file:

¢ include/kernel/hubs/L1_hub.h

7.6 _struct L1_MemoryBlock_ Struct Reference

#include <L1l_memory_api.h>

Data Fields

e L1_BYTE % Data
* L1_MemoryBlockHeader Header

VirtuosoNext-Designer-1.0.0.0

186 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

7.6.1 Detailed Description

This structure represents a memory block that can be allocated form a MemoryPool Hub. It consists of a
header and a data part.

Remarks

SPC Memory Block Size and Data fields

7.6.2 Field Documentation
7.6.2.1 L1_BYTEx Data

Payload, the user pointer, i.e. user memory space the size is determined by the memory pool parameters
and size request at allocation time.

7.6.2.2 L1_MemoryBlockHeader Header

The header of the MemoryBlock

The documentation for this struct was generated from the following file:

¢ include/kernel/L1_memory_api.h

7.7 _struct L1 _MemoryBlockHeader_ Struct Reference

#include <Ll_memory_api.h>

Data Fields

L1_UINT32 BlockSize
L1_ListElement ListElement
L1 TaskID ownerTaskID
L1_UINT32 UsedBytes

7.7.1 Detailed Description

Remarks

SPC Memory Management This structure represents the header part of a memory block.

7.7.2 Field Documentation
7.7.2.1 L1_UINT32 BlockSize

The requested size of this block, can be different from the MemPool Blocksize.

Remarks

SPC Memory Block Size

VirtuosoNext-Designer-1.0.0.0

7.8. _STRUCT_L1_PACKET_STRUCT REFERENCE 187

7.7.2.2 L1_ListElement ListElement

linkage in free list, may overlap with other fields.

Remarks

SPC Memory Block insertion into a List

7.7.2.3 L1_TaskID ownerTaskID

ID of the Task that allocated this Memory Block. Only used for Memory-Pool-Hubs.

7.7.2.4 L1_UINT32 UsedBytes

The number of bytes currently being in use. This is important for the MemoryBlockQueue users.

Remarks

SPC Memory Block used bytes

The documentation for this struct was generated from the following file:

¢ include/kernel/L1_memory_api.h

7.8 _struct_L1_Packet_ Struct Reference

#include <Ll1_packet_api.h>

Data Fields

e L1_PacketData * dataPart

e L1_PortID DestinationPortID

e L1_ErrorCode errorCode

e L1 BOOL inUse

e L1_ListElement ListElement

e L1_List x OwnerPool

* L1_PendingRequestHandler PendingRequestHandler
e L1_ListElement PendingRequestListElement
e L1_TaskID RequestingTaskID

e L1_UINT32 SequenceNumber

e L1_UINTI16 ServicelD

¢ L1_ReturnCode Status

¢ L1_Timeout Timeout

e L1_TimerTimeout TimeoutTimer

VirtuosoNext-Designer-1.0.0.0

188 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

7.8.1 Detailed Description

Entities interact using L1_Packets in VirtuosoNext.

Remarks

SPC Identical structure
SPC Header and data

7.8.2 Field Documentation
7.8.2.1 L1_PacketDatax dataPart

Pointer to the data-part of an L1_Packet. This field shall never be NULL.

7.8.2.2 L1_PortlD DestinationPortID

Specifies the Hub to/from which the Packet has to be put/get. Notes:

* in case of a task management service, DestinationHubID is a TaskID

 in case of an L1 service, DestinationHubID is a HubID

7.8.23 L1_ErrorCode errorCode

Indicates the last error the Packet / Task experienced.

Remarks

WPT Advanced Error Reporting

7.8.24 L1_BOOL inUse

This flag indicates whether or not this L1_Packet is currently being used. This is used by Interrupt Service
Routines to check whether or not their Packet has been already returned to them.

Warning

This is only meant to be used in ISRs where the Packet gets returned implicitly! Do not modify this
flag!

7.8.2.5 L1_ListElement ListElement

Remarks

SPC Packet priority

VirtuosoNext-Designer-1.0.0.0

http://localhost:88/#entity=id-2231

7.9. STRUCT_L1_PACKETPOOLSTATE_STRUCT REFERENCE 189

7.8.2.6 L1_Listx OwnerPool

is a reference to the PacketPool from which this Packet was allocated, or NULL if the Packet was not
allocated from a PacketPool.

7.8.2.7 L1_PendingRequestHandler PendingRequestHandler

Reference to the function that will be called by the Kernel-Task to handle the pending request.

7.8.2.8 L1_ListElement PendingRequestListElement

This is the ListElement is used to add an L1_Packet to the Pending Requests Queue (PRQ).

7.8.2.9 L1 _TaskID RequestingTaskiD

Specifies the ID of the Task that owns the Packet.

7.8.2.10 L1_UINT32 SequenceNumber

Internally used by the tracing subsystem to identify packets.

7.8.211 L1_UINT16 ServicelD

Specifies the Service that is requested by a Packet from the Kernel.

7.8.2.12 L1_ReturnCode Status

Indicates the status of completion of the service, set by the Kernel when it finishes serving the request.

Remarks

SPC Return Packets

7.8.2.13 L1_Timeout Timeout

Specifies the timeout (if any) associated with the requested service.

7.8.2.14 L1_TimerTimeout TimeoutTimer

This field is used to enable the L1_Packet to be inserted into an L1_TimerList.

The documentation for this struct was generated from the following file:

* include/kernel/L1_packet_api.h

7.9 _struct L1 _PacketPoolState_Struct Reference

#include <L1_hub_packet_pool.h>

VirtuosoNext-Designer-1.0.0.0

190 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

Data Fields

e L1_PacketData *const PacketDataPool
e L1_List PacketList

e 1.1 _Packet xconst PacketPool

e L1_UINTI16 Size

7.9.1 Detailed Description

The state of a Packet-Pool-Hub.
Remarks

SPC Packet Pool state variables

7.9.2 Field Documentation
7.9.2.1 L1_PacketDatax const PacketDataPool

Pointer to an array of L1_PacketData elements which has at least Size number of elements.

7.9.2.2 L1_List PacketList

List which will contain the currently free packets of the pool.

7.9.2.3 L1_Packetx const PacketPool

Pointer to an array of L1_Packets which has at least Size number of elements.

7.9.24 L1_UINT16 Size

The total number of packets in the pool, only used for initialization.

The documentation for this struct was generated from the following file:

¢ include/kernel/hubs/L1_hub_packet_pool.h

7.10 _struct_L1_Port_Struct Reference

#include <L1l_port_api.h>

Data Fields

e L1_List WaitingList

VirtuosoNext-Designer-1.0.0.0

7.11. _STRUCT_L1_RESOURCESTATE_STRUCT REFERENCE 191

7.10.1 Detailed Description

Remarks

SPC Input Port

This structure represents a Task Input Port (TIP), which is used to pass L1_Packets to the Kernel Task or
Link Driver Tasks for processing. In case of Asynchronous Interactions the Task Input Port contains the
Asynchronous Packets that have been returned to the Task.

7.10.2 Field Documentation
7.10.2.1 L1_List WaitingList

The Priority ordered List of L1_Packets in the Input Port.

The documentation for this struct was generated from the following file:

¢ include/kernel/L1_port_api.h

7.11 _struct_L1_ResourceState_Struct Reference

#include <L1l_hub_resource.h>

Data Fields

* L1_Priority CeilingPriority
L1_BOOL Locked

e L1_Priority OwnerBoostedToPriority
L1_TaskID OwningTaskID

7.11.1 Detailed Description
State of a Resource-Hub.

Remarks

SPC Resource state variables

7.11.2 Field Documentation
7.11.2.1 L1 _Priority CeilingPriority

Defines the maximum Priority to which the Task owning this Resource may be boosted.

Remarks

SPC Configurable Ceiling Priority

VirtuosoNext-Designer-1.0.0.0

192 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

7.11.2.2 L1_BOOL Locked

Identifies whether or not the Resource is currently locked or not.

7.11.2.3 L1_Priority OwnerBoostedToPriority

The Priority to which the Task owning this Resource has been boosted to already. It is used to avoid
repeated boosting of the Priority in cases where a Task has already been boosted to a higher Priority. The
maximum priority this field may contain is the value given in the field CeilingPriority.

7.11.2.4 L1 _TaskID OwningTaskiD

If the Resource is locked, i.e. Locked==L.1_TRUE, then this field contains the ID of the Task that owns
this Resource.

The documentation for this struct was generated from the following file:

¢ include/kernel/hubs/L1_hub_resource.h

7.12 _struct_L1_SemaphoreState_ Struct Reference

#include <L1_hub_semaphore.h>

Data Fields

e L1_UINT16 Count

7.12.1 Detailed Description

State of a Semaphore-Hub.
Remarks

SPC Semaphore state wvariable

7.12.2 Field Documentation
7.12.2.1 L1_UINT16 Count

How often the Semaphore-Hub has been signaled.

Remarks

SPC Semaphore counter lower bound

The documentation for this struct was generated from the following file:

¢ include/kernel/hubs/L.1_hub_semaphore.h

VirtuosoNext-Designer-1.0.0.0

7.13. _STRUCT_TRACEBUFFER_ STRUCT REFERENCE 193

7.13 _struct_tracebuffer_ Struct Reference

#include <L1l_types.h>

Data Fields

L1_UINT32 param0
L1_UINT32 paraml1
L1_UINT32 param2
L1_UINT32 param3

7.13.1 Detailed Description

This structure represents one event recorded in the Trace-Buffer.

7.13.2 Field Documentation
7.13.2.1 L1_UINT32 param0

This is the first parameter in the Trace-Buffer, it should be used to encode the 8 bit type in the lowest 8bit
of the 32Bit word, the highest 24Bit are used to store the elapsed system ticks (usually ms).

7.13.2.2 L1_UINT32 parami

The second parameter of an event contains the value of the high counter, usually the clock value.

7.13.2.3 L1_UINT32 param2

The content of this parameter depends upon the type of event that was traced.

7.13.24 L1_UINT32 param3

The content of this parameter depends upon the type of event that was traced.

The documentation for this struct was generated from the following file:

* include/L1_types.h

7.14 L1 _BlackBoard Board Struct Reference

#include <L1_hub_black_board.h>

Data Fields

e L1_BYTE message [L1_PACKET_DATA_SIZE-sizeof(L1_UINT32)]
e L1_UINT32 messageNumber

VirtuosoNext-Designer-1.0.0.0

194 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

7.14.1 Detailed Description

Represents the content of a Blackboard.

Remarks

SPC BlackBoard State Variables

7.14.2 Field Documentation
7.1421 L1_BYTE message[L1_PACKET_DATA _SIZE-sizeof(L1_UINT32)]

This is the message that got published.

7.14.2.2 L1_UINT32 messageNumber

This is a copy of the variable messageNumber in the Hub, but in network endianness.

The documentation for this struct was generated from the following file:

¢ include/kernel/hubs/L1_hub_black_board.h

7.15 L1 _BlackBoard HubState Struct Reference

#include <L1_hub_black_board.h>

Data Fields

e LL1_BlackBoard_Board board
e L1 _UINT32 dataSize
e L1_UINT32 messageNumber

7.15.1 Detailed Description

The state of a BlackBoard Hub.

Remarks

SPC BlackBoard State Variables
7.15.2 Field Documentation

7.15.2.1 L1_BlackBoard_Board board

This is the board where the Message gets published. This gets copied verbosely to the reader.

7.15.2.2 L1_UINT32 dataSize

The size of the message on the board. Must be less or equal L1_PACKET_DATA_SIZE - sizeof(L1_UI-
NT32).

VirtuosoNext-Designer-1.0.0.0

7.16. L1_DATAEVENT_HUBSTATE STRUCT REFERENCE 195

7.15.2.3 L1_UINT32 messageNumber

This counts the number of messages that have been written to the board. This is in local CPU endianness.

The documentation for this struct was generated from the following file:

¢ include/kernel/hubs/LL1_hub_black_board.h

7.16 L1 _DataEvent HubState Struct Reference

#include <L1_hub_data_event.h>

Data Fields

e L1_PacketData * dataPart
e L1_BOOL isSet

7.16.1 Detailed Description

State of a DataEvent-Hub.

Remarks

SPC Data Event state variables

7.16.2 Field Documentation
7.16.2.1 L1 _PacketDatax dataPart

Data Part of the Data-Event.

7.16.2.2 L1_BOOL isSet

Indicates whether or not the DataEvent-Hub has been signalled.

The documentation for this struct was generated from the following file:

¢ include/kernel/hubs/L1_hub_data_event.h

7.17 L1_HubNameTolD Struct Reference

#include <L1l_types.h>

Data Fields

e L1 _UINT32id
e char * name
e L1_UINT32 type

VirtuosoNext-Designer-1.0.0.0

196 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

7.17.1 Detailed Description

This structures are used to comply with OCG-6, these are currently test implementations.

7.17.2 Field Documentation
7.17.2.1 L1_UINT32id

The global ID of the Task;

7.17.2.2 charx name

The name given to the Task;

7.17.2.3 L1_UINT32 type

Type ID of the Hub.

The documentation for this struct was generated from the following file:

e include/L1_types.h

7.18 L1_MemoryBlockQueue HubState Struct Reference

#include <L1_hub_memory_block_gqueue.h>

Data Fields

e L1_MemoryBlock * blocks

e const L1_UINT?32 blockSize

e L.1_List freeBlocks

* L1_BYTE % memory

e L1_UINT32 nbrOfAcquiredBlocks
e const L1_UINT?32 nbrOfBlocks

e L1_UINT32 nbrOfUsedBlocks

e LL1_List usedBlocks

7.18.1 Detailed Description

Remarks

SPC Memory Block Queue fields
7.18.2 Field Documentation

7.18.2.1 L1_MemoryBlock= blocks

Array of L1_MemoryBlock elements that will be inserted into the empty buffers list (emptyBuffers There
must be at least nbrOfBlocks elements in the array).

VirtuosoNext-Designer-1.0.0.0

7.19. L1_MEMORYPOOL_HUBSTATE STRUCT REFERENCE 197

7.18.2.2 const L1_UINT32 blockSize

The number of bytes each Block has. This is important during initialisation as well as during operation.

Remarks

SPC Memory Block Queue Block size

7.18.2.3 L1_List freeBlocks

This is a double linked list of L1_MemoryBlock elements which are currently not in use.

7.18.24 L1 _BYTEx memory

Pointer to a buffer of size (blockSize * nbrOfBlocks). This memory is assigned to the memory-blocks.

7.18.2.5 L1_UINT32 nbrOfAcquiredBlocks

How many L1_MemoryBlock elements have been given to other Tasks.

7.18.2.6 const L1_UINT32 nbrOfBlocks

How many L1_MemoryBlock elements are assigned to this MemoryBlockQueue-Hub.

Remarks

SPC Memory Block Queue size

7.18.2.7 L1_UINT32 nbrOfUsedBlocks

Numer of Memory Blocks in the list usedBlocks

7.18.2.8 L1_List usedBlocks

This is a double linked list of L1_MemoryBlock elements which are currently full. Important all these
elements must have the same priority, otherwise they will overtake each other.

The documentation for this struct was generated from the following file:

¢ include/kernel/hubs/L.1_hub_memory_block_queue.h

7.19 L1 _MemoryPool HubState Struct Reference

#include <L1_hub_memory_pool.h>

VirtuosoNext-Designer-1.0.0.0

198 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

Data Fields

 const L1_UINT32 BlockSize

e L1_List FreeMemoryBlockList

* const L1_MemoryBlock * MemoryBlockPool
e const L1_UINT16 NumberOfBlocks

e L1_List OccupiedMemoryBlockList

7.19.1 Detailed Description

The state information of the Memory-Pool Hub.

// These are the blocks of memory that get allocated for the user.
L1_BYTE MemoryPool_MP1l_Memory[1][1024];

// Data structures that combine the memory block with the management information.
L1l_MemoryBlock MemoryPool_ MP1l_MemoryBlocks[1l] =
{

.Header =

{
.ListElement = {NULL,NULL,1},
// This parameter comes from the system.xml
.DataSize = 1024,

}I

.Data = &MemoryPool_ MP1l_Memory[0]

}I
}i

// The HubState information for the Memroy.
L1l _MemoryPool_ HubState MemoryPool_MP1l_ HubState =

{

// This parameter comes from the system.xml

.NumberOfBlocks = 1,

// This parameter comes from the system.xml

.BlockSize = 1024,

.MemoryBlockPool = MemoryPool MP1l_ MemoryBlocks,
.FreeMemoryBlockList = { .SentinelElement = {NULL, NULL, 1} },
.OccupiedMemoryBlockList = { .SentinelElement = {NULL, NULL, 1} }

}i

Remarks

SPC Memory Pool state variables

7.19.2 Field Documentation
7.19.2.1 const L1_UINT32 BlockSize

Size of the individual blocks in byte. Set by the codegens

VirtuosoNext-Designer-1.0.0.0

7.20. L1_NODESTATUSSTRUCTURE STRUCT REFERENCE 199

7.19.2.2 L1_List FreeMemoryBlockList

List that contains the currently available Free MemoryBlocks.

7.19.2.3 const L1_MemoryBlock+ MemoryBlockPool

Pointer to an array of elements of type L1_MemoryBlock.

7.19.2.4 const L1_UINT16 NumberOfBlocks

Number of Memory-Blocks in the pool, only used for initialisation. Set by the codegens

7.19.25 L1 _List OccupiedMemoryBlockList

List that contains the currently occupied MemoryBlocks

The documentation for this struct was generated from the following file:

* include/kernel/hubs/L1_hub_memory_pool.h

7.20 L1 NodeStatusStructure Struct Reference

#include <L1l_kernel_data.h>

Data Fields

¢ L1_KernelTicks currentTime

e L1_UINT32 kernelTickFrequencyHz

e L1_UINT32 maxNumberOfPacketsInRxPacketPool

e L1_UINT?32 nodePacketCount

¢ LL1_UINT32 numberOfDiscardedRxPackets

e LL1_UINT32 numberOfHubs

e L1_UINT32 numberOflllegalServiceRequests

e L1_UINT32 numberOfTasks

e L1_UINT32 numberOfTimesSemaphoreMaxCountReached

7.20.1 Detailed Description

Information related to the status of the Node.

7.20.2 Field Documentation
7.20.2.1 L1_KernelTicks currentTime

The number of ticks that expired since the Kernel-Task started.

VirtuosoNext-Designer-1.0.0.0

200 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

7.20.2.2 L1_UINT32 kernelTickFrequencyHz

The frequency of the Kernel-Tick in Hz.

7.20.2.3 L1_UINT32 maxNumberOfPacketsinRxPacketPool

The maximum number of Packet in the RX-Packet-Pool.

7.20.2.4 L1_UINT32 nodePacketCount

The number of Packets this Node has sent.

7.20.2.5 L1_UINT32 numberOfDiscardedRxPackets

The number of RX-Packets that got discarded because there were not enough Packets in the RX-Packet--
Pool.

7.20.2.6 L1_UINT32 numberOfHubs

The number of Hubs this Node manages.

7.20.2.7 L1_UINT32 numberOflllegalServiceRequests

The number of illegal service requests encountered by the Kernel-Task.

7.20.2.8 L1_UINT32 numberOfTasks

The number of Tasks this Node manages.

7.20.2.9 L1_UINT32 numberOfTimesSemaphoreMaxCountReached

How often a Semaphore-Hub has reached its max-count.

The documentation for this struct was generated from the following file:

¢ include/kernel/L1_kernel_data.h

7.21 L1 _PacketData Struct Reference

#include <L1l_packet_api.h>

Public Member Functions

« L1_BYTE data[L1_PACKET_DATA_SIZE] __attribute__ ((aligned(L1_DATA_ALIGNMENT)))

VirtuosoNext-Designer-1.0.0.0

7.22. L1_TASKCONTROLRECORD STRUCT REFERENCE

201

Data Fields
e L1_UINT32 dataSize

¢ L1 _ListElement ListElement

7.21.1 Detailed Description

Represents the data-part of an L1_Packet.

7.21.2 Member Function Documentation
7.21.21 L1_BYTE data [L1_PACKET_DATA SIZE] __attribute__((aligned(L1_DATA_ALIGNMENT)))

The buffer for the data to be stored.

7.21.3 Field Documentation

7.21.3.1 L1_UINT32 dataSize

Remarks

SPC Data size field The number of bytes used in the field data.

7.21.3.2 L1_ListElement ListElement

This list element will allow chaining of L1_PacketData elements.

The documentation for this struct was generated from the following file:

* include/kernel/L.1_packet_api.h

7.22 L1 _TaskControlRecord Struct Reference

#include <L1_task_api.h>

Data Fields

 const L1_TaskAbortFunction AbortHandler
e L1_TaskArguments Arguments

* L1_TaskContext * Context

e L1_KeyedList CriticalSectionWaitingList
 const L1_TaskFunction EntryPoint

e L1_Priority IntrinsicPriority

e L1_BOOL isSuspended

¢ L1_ListElement ListElement

* L1_Packet xconst RequestPacket

e const L1_TaskID TaskID

e L1_InputPort *const TaskInputPort

e L1_TaskStatus TaskState

VirtuosoNext-Designer-1.0.0.0

202 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

7.22.1 Detailed Description

L1_TaskControlRecord is a structure that represents a Task

7.22.2 Field Documentation
7.22.21 const L1_TaskAbortFunction AbortHandler

Pointer to the function that represents the Abort-Handler, i.e. the function that will be called when the Task
caused a fatal CPU-Exception.

This function shall cleanup the Task-State to ensure that the Task can be restarted. This means releasing
off Resources the Task may have acquired during it’s runtime.

7.22.2.2 L1_TaskArguments Arguments

Arguments to the Task-Entry-Point function identified by the field EntryPoint.

Remarks

SPC Task arguments

7.22.2.3 L1_TaskContext+ Context

Pointer to the Platform dependent Context of the Task.

7.22.2.4 L1 _KeyedList CriticalSectionWaitingList

Remarks

SPC Resource Priority Inheritance
SPC Returning the Priority back to the original wvalue

7.22.25 const L1_TaskFunction EntryPoint

Pointer to the function that represents the Task-Entry-Point, i.e. the function that will be called when the
Task gets scheduled.

7.22.2.6 L1 Priority IntrinsicPriority

Remarks

SPC Task priority
SPC Returning the Priority back to the original value

7.22.2.7 L1_BOOL isSuspended

VirtuosoNext-Designer-1.0.0.0

7.23. L1_TASKNAMETOID STRUCT REFERENCE 203

Remarks

SPC Task states Indicates whether or not the Task is currently suspended.

7.22.2.8 L1_ListElement ListElement

Remarks

SPC Priority based scheduling
SPC Task priority

7.22.2.9 L1_Packetx const RequestPacket

Pointer to the L1_Packet which represents the Request-Packet of the Task.

Remarks

SPC Request Packet
SPC Task priority
7.22.2.10 const L1_TaskID TaskiD

The ID assigned to the Task.

7.22.2.11 L1_InputPortx const TaskinputPort

Identifies the Input Port of the Task. (Driver Input Port or Task Input Port.)

Remarks

SPC Dedicated input Port
SPC Input Port
7.22.2.12 L1_TaskStatus TaskState

State of the Task, identifies whether the Task is started or inactive.

The documentation for this struct was generated from the following file:

* include/kernel/L1_task_api.h

7.23 L1 _TaskNameTolD Struct Reference

#include <L1_types.h>

Data Fields

e L1_UINT32id
¢ char * name

VirtuosoNext-Designer-1.0.0.0

204 CHAPTER 7. DATA STRUCTURE DOCUMENTATION

7.23.1 Detailed Description

This structures are used to comply with OCG-6, these are currently test implementations.

7.23.2 Field Documentation
7.23.2.1 L1_UINT32id

The global ID of the Task;

7.23.2.2 charx nhame

The name given to the Task;

The documentation for this struct was generated from the following file:

e include/L1_types.h

7.24 L1 _WLM_ State Struct Reference

#include <L1l_workload_monitoring.h>

Data Fields

e volatile L1_UINT32 currentLoopCount

* volatile L1_UINT32 previousLoopCount

e L1_TimeStamp tO

e L1_TimeStamp tl

* volatile L1_UINT32 terminationLoopCount
¢ volatile L1_UINT32 workloadPeriodCount
» const L1_UINT32 workloadPeriodLength

7.24.1 Detailed Description

Remarks

SPC Workload Monitoring The integration time defines how often a new workload measure-
ment will be available and the amount of time over which the execution of the idle task will be tracked.
Workload monitor state.

7.24.2 Field Documentation
7.24.2.1 volatile L1_UINT32 currentLoopCount

This will contain the current workload in units of 0.1%. Current count of workload loops in the idleTask.

7.24.2.2 volatile L1_UINT32 previousLoopCount

Previous workload count.

VirtuosoNext-Designer-1.0.0.0

7.24. L1_WLM_STATE STRUCT REFERENCE

205

7.24.2.3 L1_TimeStamp t0

Starting time of the measurement period, as L1_TimeStamp

7.24.2.4 L1 _TimeStamp t1

End time of the measurement period, as L1_TimeStamp

7.24.2.5 volatile L1_UINT32 terminationLoopCount

Workload count at which the Idle-Loop shall terminate. This is used during the calibration run.

7.24.2.6 volatile L1_UINT32 workloadPeriodCount

Counter for the number of ticks that still need to occur till the end of the measurement period.

7.24.2.7 const L1_UINT32 workloadPeriodLength

Over how many ticks the workload shall be calculated.

The documentation for this struct was generated from the following file:

¢ include/kernel/L.1_workload_monitoring.h

VirtuosoNext-Designer-1.0.0.0

Part IV

Stdio Host Service

Chapter 8

Module Index

8.1 Modules

Here is a list of all modules:

Stdio Host Server L
Stdio Host Server Component Description

Chapter 9

Module Documentation

9.1

Stdio Host Server

Modules

Stdio Host Server Component Description

Functions

9.11

L1_ReturnCode Shs_putChar_W (L1_HubID shs, L1_BYTE charValue)
L1_ReturnCode Shs_getChar_W (L1_HubID shs, L1_BYTE xpChar)

L1_ReturnCode Shs_putlnt_W (L1_HubID shs, L1_INT32 intValue, L1_BYTE format)
L1_ReturnCode Shs_getlnt_ W (L1_HubID shs, L1_INT32 xplnt)

L1_ReturnCode Shs_putString_W (L1_HubID shs, const char *str)

L1_ReturnCode Shs_getString_W (L1_HubID shs, L1_UINT32 maxLength, char «pStr, L1_UIN-
T32 xpRealLength)

L1_ReturnCode Shs_openFile_W (L1_HubID shs, const char xfileName, const char *mode, L1_-
GlobalPointer *fileHandle)

L1_ReturnCode Shs_closeFile_W (L1_HubID shs, L1_GlobalPointer fileHandle)

L1_ReturnCode Shs_writeToFile_W (L1_HubID shs, L1_GlobalPointer fileHandle, L1_BYTE xbuffer,
L1_UINT32 toWrite, L1_UINT32 «xpWritten)

L1_ReturnCode Shs_readFromFile_ W (L1_HubID shs, L1_GlobalPointer fileHandle, L1_BYTE
xbuffer, L1_UINT32 toRead, L1_UINT32 xpRead)

L1_ReturnCode DumpTraceBuffer_W (L1_HubID ServerInputPort)

Detailed Description

9.1.2 Function Documentation

9.1.21

L1_ReturnCode DumpTraceBuffer W (L1_HubID ServerinputPort)

Temporarily stops the tracing and meanwhile sends the content of the trace buffer to the StdioHostServer
specified in the parameter ServerInputPort.

212 CHAPTER 9. MODULE DOCUMENTATION

Parameters

ServerInput- | address of the Stdio Host Server Input port.
Port

Returns
L1_ReturnCode:
¢ RC_OK: Dumping the trace buffer was completed successfully.
* RC_FAIL: Operation failed.

9.1.2.2 L1_ReturnCode Shs_closeFile_'W (L1_HubID shs, L1_GlobalPointer fileHandle)

Closes a file previously opened using the function Shs_openFile().

Parameters

shs | is the ID of the ShsInputPort of the Stdio Host Server.
fileHandle | is the file-handle previously acquired from the Stdio Host Server using the function
Shs_openFile().

Returns
L1_ReturnCode
* RC_OK: The request was successful

e RC_FAIL: The request failed.

9.1.2.3 L1_ReturnCode Shs_getChar W (L1_HubID shs, L1_BYTE « pChar)

Retrieves one Character from the Stdio Host Server console. The retrieved character is returned to the user
in the character value at pChar.

Parameters

shs | is the ID of the ShsInputPort of the Stdio Host Server.

pChar | is the Pointer to a variable of type L1_BYTE which should hold the retrieved character.

Returns
L1_ReturnCode
* RC_OK: The request was successful
e RC_FAIL: The request failed.

VirtuosoNext-Designer-1.0.0.0

9.1. STDIO HOST SERVER 213

9.1.2.4 L1_ReturnCode Shs_getint W (L1_HubID shs, L1_INT32 « pint)

Retrieves an integer from the Stdio Host Server console. The retrieved integer is returned to the user in the
character value at pInt.

Parameters

shs | is the ID of the ShsInputPort of the Stdio Host Server.

plnt | is the pointer to a variable of type int which should hold the retrieved integer value.

Returns

L1_ReturnCode
* RC_OK: The request was successful
e RC_FAIL: The request failed.

9.1.25 L1_ReturnCode Shs_getString W (L1_HubID shs, L1_UINT32 maxLength, char = pStr, L1_UINT32
« pRealLength)

Retrieved a string value from the Stdio Host Server.

Parameters

shs | is the ID of the ShsInputPort of the Stdio Host Server.

maxLength | is the the number of characters the buffer (pStr) can hold.

pStr | is the pointer to character array which should be filled with the retrieved string.

pRealLength | is the pointer to an integer which will hold number of returned characters, including the
terminating zero.

Returns

L1_ReturnCode
* RC_OK: The request was successful
¢ RC_FAIL: The request failed.

9.1.2.6 L1_ReturnCode Shs_openFile W (L1_HubID shs, const char « fileName, const char « mode,
L1_GlobalPointer x fileHandle)

Opens a file on the Stdio Host Server file system.

Parameters

shs | is the ID of the ShsInputPort of the Stdio Host Server.

fileName | is the name of a file to open.

mode | is the mode in which the file should be opened. It can contain 1 or 2 symbols.

fileHandle | is the pointer to file handle associated with the opened file. This handle in generated by
the StdioHostService.

Returns
L1_ReturnCode

¢ RC_OK: The request was successful.
e RC_FAIL: The request failed.

VirtuosoNext-Designer-1.0.0.0

214 CHAPTER 9. MODULE DOCUMENTATION

9.1.2.7 L1_ReturnCode Shs_putChar W (L1_HubID shs, L1_BYTE charValue)

Writes one character value onto the console associated with the Stdio Host Server.

Parameters

shs | is the ID of the ShsInputPort of the Stdio Host Server.

charValue | is the character to write onto the console.

Returns

L1 ReturnCode
* RC_OK: The request was successful
¢ RC_FAIL: The request failed.

9.1.2.8 L1_ReturnCode Shs_putint W (L1_HubID shs, L1_INT32 intValue, L1_BYTE format)

This function outputs an integer (intValue) into the console associated with the Stdio Host Server. The
output format (octal, decimal, hexa-decimal) must be specified using the character format.

Parameters

shs | is the ID of the ShsInputPort of the Stdio Host Server.

intValue | is the integer to output into the console.

format | is the character specifying in which format the integer should be written onto the con-
sole. The following are permitted:

* 0’ — Octal output
* ’d’ — Decimal output

* ’x’ — Hexa-decimal output.

Returns
L1_ReturnCode

* RC_OK: The request was successful
¢ RC_FAIL: The request failed.

9.1.2.9 L1_ReturnCode Shs_putString_W (L1_HubID shs, const char x str)
Prints the string str with onto the console, only length characters are written on to the console.

Parameters

shs | is the ID of the ShsInputPort of the Stdio Host Server.

str | is the C-string to write onto the console.

Returns

L1 ReturnCode
* RC_OK: The request was successful
¢ RC_FAIL: The request failed.

VirtuosoNext-Designer-1.0.0.0

9.2. STDIO HOST SERVER COMPONENT DESCRIPTION 215

9.1.2.10 L1_ReturnCode Shs_readFromFile_W (L1_HubID shs, L1_GlobalPointer fileHandle, L1_BYTE
buffer, L1_UINT32 toRead, L1_UINT32 « pRead)

Reads from a file opened by the server.

Parameters

shs | - is the ID of the ShsInputPort of the Stdio Host Server.

fileHandle | - is the file-handle previously acquired from the Stdio Host Server using the function
Shs_openFile().

buffer | is the pointer to the location where the retrieved data should be stored.

toRead | - how many bytes should be read from the file.

pRead | - how many bytes were actually retrieved from the file.

Returns

L1_ReturnCode
* RC_OK: The request was successful
¢ RC_FAIL: The request failed.

9.1.2.11 L1_ReturnCode Shs_writeToFile_'W (L1_HublID shs, L1_GlobalPointer fileHandle, L1 BYTE x
buffer, L1_UINT32 toWrite, L1_UINT32 x pWritten)

This function writes the number of bytes (toWrite) of the byte array at buffer into the file indicated by
fileHandle.

Parameters

shs | is the ID of the ShsInputPort of the Stdio Host Server.

fileHandle | is the file-handle previously acquired from the Stdio Host Server using the function
Shs_openFile().

buffer | - the pointer to the first byte of the memory block to be written to the file.

toWrite | - the number of bytes to be written into the file.

pWritten | - pointer to an unsigned integer which contain the number of bytes that were actually
written.

Returns
L1_ReturnCode

* RC_OK: The request was successful
e RC_FAIL: The request failed.

9.2 Stdio Host Server Component Description

=

by

Figure 9.1: Stdio Host Server Icon.

VirtuosoNext-Designer-1.0.0.0

216 CHAPTER 9. MODULE DOCUMENTATION

The StdioHostServer allows Tasks to access the screen and the file system of a Win32 or Posix32 Node.
This Component can only be mapped to Windows32 or Posix32 Nodes.

The Stdio Host Server Component has the following attributes:

* node: The name of the Node to which the Stdio Host Server instance is mapped.
* name: Name of the Stdio Host Server instance.

* SHSCeilingPriority: The ceiling priority of the Stdio Host Server instance.

VirtuosoNext-Designer-1.0.0.0

Part V

Graphical Host Service

Chapter 10

Data Structure Index

10.1 Data Structures

Here are the data structures with brief descriptions:

GhsBrush e 223
GhsColour e 223
GhsPen e 224

GhsRect e e e e 225

Chapter 11

File Index

11.1 File List

Here is a list of all files with brief descriptions:

src/include/GraphicalHostService/GhsTypes.h
src/include/GraphicalHostService/GraphicalHostClient.h
src/include/GraphicalHostService/GraphicalHostService.h

Chapter 12

Data Structure Documentation

12.1 GhsBrush Struct Reference

#include <GhsTypes.h>

Data Fields

* GhsColour colour
* GhsBrushStyle style

12.1.1 Detailed Description

Defines the type describing a Brush as used by the Graphical Host Service.

12.1.2 Field Documentation

12.1.2.1 GhsColour colour

12.1.2.2 GhsBrushStyle style

The documentation for this struct was generated from the following file:

* src/include/GraphicalHostService/GhsTypes.h

12.2 GhsColour Struct Reference

#include <GhsTypes.h>

Data Fields

« LI_BYTEr
« LI_BYTEg
« LI_BYTEb

224 CHAPTER 12. DATA STRUCTURE DOCUMENTATION

12.2.1 Detailed Description

Defines how Colours are represented in the Graphical Host Server Data structures.

12.2.2 Field Documentation
12.2.21 L1BYTEb

Blue component

12222 L1BYTEg

Green component

12223 L1BYTEr

Red component

The documentation for this struct was generated from the following file:

* src/include/GraphicalHostService/GhsTypes.h

12.3 GhsPen Struct Reference

#include <GhsTypes.h>

Data Fields

¢ GhsColour colour
e L1_UINT32 lineWidth
* GhsPenStyle style

12.3.1 Detailed Description

Defines the type describing a Pen as used by the Graphical Host Service.

12.3.2 Field Documentation

12.3.2.1 GhsColour colour

12.3.2.2 L1_UINT32 lineWidth

12.3.2.3 GhsPenStyle style

The documentation for this struct was generated from the following file:

¢ src/include/GraphicalHostService/GhsTypes.h

VirtuosoNext-Designer-1.0.0.0

12.4. GHSRECT STRUCT REFERENCE

225

12.4 GhsRect Struct Reference

#include <GhsTypes.h>

Data Fields

12.4.1

L1_UINT32 left
L1_UINT32 top
L1_UINT32 right
L1_UINT32 bottom

Detailed Description

This structure represents a rectangle.

12.4.2
12.4.2.1
12.4.2.2
12.4.2.3

12.4.2.4

The documentation for this struct was generated from the following file:

Field Documentation
L1_UINT32 bottom
L1_UINT32 left
L1_UINT32 right

L1_UINT32 top

* src/include/GraphicalHostService/GhsTypes.h

VirtuosoNext-Designer-1.0.0.0

Chapter 13

File Documentation

13.1 src/include/GraphicalHostService/GhsTypes.h File Reference

#include <L1l_api.h>

Enumerations

* enum GhsBrushStyle { GhsBrushSolid = 1, GhsBrushDiagonal }
¢ enum GhsPenStyle { GhsPenSolid =1 }

13.1.1 Enumeration Type Documentation
13.1.1.1 enum GhsBrushStyle
Defines the different styles a brush can have.

Enumerator

GhsBrushSolid
GhsBrushDiagonal Not Implemented yet.

13.1.1.2 enum GhsPenStyle
Defines the different styles a pen can have.

Enumerator
GhsPenSolid

13.2 src/include/GraphicalHostService/GraphicalHostClient.h File Reference

#include <GraphicalHostService/GhsTypes.h>

228 CHAPTER 13. FILE DOCUMENTATION

Functions

e L1_ReturnCode Ghs_openSession_W (L1_HubID ghsInputPort, L1_UINT32 *pSessionID)

e L1_ReturnCode Ghs_closeSession_W (L1_HubID ghsInputPort, L1_UINT32 sessionld)

e L1_ReturnCode Ghs_getServerVersion_W (L1_HubID ghsInputPort, L1_UINT32 «pServerVersion)

e L1_ReturnCode Ghs_setPen_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, GhsPenStyle
penStyle, L1_BYTE lineWidth, L1_BYTEr,L1_BYTE g, L1_BYTEb)

e L1_ReturnCode Ghs_setBrush_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, GhsBrush-
Style brushStyle, L1_BYTEr, L1_BYTE g, L1_BYTE b)

e L1_ReturnCode Ghs_drawLine_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, L1_UINT32
x1, L1_UINT32 y1, L1_UINT32 x2, L1_UINT32 y2)

* L1_ReturnCode Ghs_drawRect_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, L1_UINT32
x1, L1_UINT32 y1, L1_UINT32 x2, L1_UINT32 y2)

e L1_ReturnCode Ghs_drawCircle_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, L1_UIN-
T32x, L1_UINT32y, L1_UINT32r)

e L1_ReturnCode Ghs_drawText_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, L1_UINT16
x, LI_UINT16 y, char xtext)

e L1_ReturnCode Ghs_setTextColour_W (L1_HubID ghsInputPort, L1_UINT32 ghsSession, L1_B-
YTEr, L1_BYTE g, L1_BYTE b)

e L1_ReturnCode Ghs_setCanvasSize_W (L1_HubID ghsInputPort, L1_UINT32 width, L1_UINT32
height)

e L1_ReturnCode Ghs_getCanvasSize_W (L1_HubID ghsInputPort, L1_UINT32 xwidth, L1_UIN-
T32 xheight)

13.2.1 Function Documentation
13.2.1.1 L1_ReturnCode Ghs_closeSession W (L1_HubID ghsinputPort, L1_UINT32 sessionld)

Closes a previously opened session on the Graphical Host Server.

Parameters

ghsInputPort | Input Port of the Graphical Host Server where to close the session.

sessionld | ID of the session to close

Returns
L1_ReturnCode
¢ RC_OK the session could be closed.
¢ RC_FAIL the session could not be closed.

13.2.1.2 L1_ReturnCode Ghs_drawCircle_ W (L1_HubID ghsinputPort, L1_UINT32 ghsSession, L1_UINT32
x, L1_UINT32 y, L1_UINT32r)

Draws a circle defined by the centre point (x,y) and the radius r. The circle will be filled with the brush
defined by setBrush() and the surrounding line will be drawn with the pen specified for the ghsSession.

VirtuosoNext-Designer-1.0.0.0

13.2. SRC/INCLUDE/GRAPHICALHOSTSERVICE/GRAPHICALHOSTCLIENT.H FILE
REFERENCE 229

Parameters

ghsInputPort | Address of the Graphical Host Server to send this request to.

ghsSession | SessionlD for the session to draw in.

x | The X part of the centre point.

y | The Y part of the centre point.

r | The radius of the circle.

Returns

L1_ReturnCode
¢ RC_OK the request was successful.
* RC_FAIL the request was not successful.

13.2.1.3 L1_ReturnCode Ghs_drawLine W (L1_HubID ghsinputPort, L1_UINT32 ghsSession, L1_UINT32
x1, L1_UINT32 y1, L1_UINT32 x2, L1_UINT32 y2)

Draws a line between the points x1,y1 and x2,y2, using the pen specified for the given ghsSession.

Parameters

ghsInputPort | Address of the Graphical Host Server to send this request to.

ghsSession | SessionlD for the session to draw in

xI | The X part of the first point.

vyl | The Y part of the first point.

x2 | The X part of the second point.

y2 | The Y part of the second point.

Returns

L1_ReturnCode
* RC_OK the request was successful.
* RC_FAIL the request was not successful.

13.2.1.4 L1 _ReturnCode Ghs_drawRect W (L1_HublID ghsinputPort, L1_UINT32 ghsSession, L1_UINT32
x1, L1_UINT32 y1, L1_UINT32 x2, L1_UINT32 y2)

Draws a rectangle defined by the points (x1,y1) and (x2,y2). The rectangle will be filled with the brush
defined by setBrush() and the surrounding line will be drawn with the pen specified for the ghsSession.

Parameters

ghsInputPort | Address of the Graphical Host Server to send this request to.

ghsSession | SessionID for the session to draw in.

xI | The X part of the first point.

vyl | The Y part of the first point.

x2 | The X part of the second point.

y2 | The Y part of the second point.

Returns

L1_ReturnCode
¢ RC_OK the request was successful.
* RC_FAIL the request was not successful.

VirtuosoNext-Designer-1.0.0.0

230 CHAPTER 13. FILE DOCUMENTATION

13.2.1.5 L1_ReturnCode Ghs_drawText W (L1_HublD ghsinputPort, L1_UINT32 ghsSession, L1_UINT16 x,
L1_UINT16 y, char « text)

This function draws the string s at the position (x,y) onto the canvas.

Parameters

ghsInputPort | Address of the Graphical Host Server to send this request to.

ghsSession | SessionID for the session to draw in.

x | The X part of the first point.

y | The Y part of the first point.

text | The string to draw onto the canvas.

Returns
L1 ReturnCode

¢ RC_OK the request was successful.
* RC_FAIL the request was not successful.

13.2.1.6 L1_ReturnCode Ghs_getCanvasSize W (L1_HublD ghsinputPort, L1_UINT32 x width, L1_UINT32 x
height)
This functions gets the size of the canvas the Graphical Host Server provides.

Parameters

ghsInputPort | Address of the Graphical Host Server to send this request to.

width | This parameter returns the horizontal size (x-axis) of the canvas in pixel.

height | This parameter returns the vertial size (y-axis) of the canvas in pixel.

Returns
L1 ReturnCode

¢ RC_OK the request was successful.
* RC_FAIL the request was not successful.

13.2.1.7 L1_ReturnCode Ghs_getServerVersion W (L1_HublD ghsinputPort, L1_UINT32 « pServerVersion)
Queries the Graphical Host Server for its version number.

Parameters

ghsInputPort | Port to which to send the query to.

pServerVersion | After this function returns successfully, the L1_UINT32 which this pointer points to
contains the version number of the Graphical Host Server.

Returns
L1_ReturnCode

* RC_OK, *pVersion contains the version number of the server.

* RC_FAIL, operation failed, pVersion is set to zero.

VirtuosoNext-Designer-1.0.0.0

13.2. SRC/INCLUDE/GRAPHICALHOSTSERVICE/GRAPHICALHOSTCLIENT.H FILE
REFERENCE 231

13.2.1.8 L1_ReturnCode Ghs_openSession W (L1_HubID ghsinputPort, L1_UINT32 « pSessionID)

Opens a session with the graphical host server indicated by ghsInputPort.

Parameters

ghsInputPort | Input Port of the Graphical Host Server where to close the session.

pSessionID | the L1_UINT32 variable this pointer points to will contain the sessionID of the newly
opened session. This ID has to be used whenever trying to communicate with the
Graphical Host Server.

Returns

L1 ReturnCode
e RC_OK the session could be created.
¢ RC_FAIL the session could not be created.

Warning

Once a Task does not want to interact with a Graphical Host Service any longer, do not forget to close
the session using the Function Ghs_closeSession_W().

13.2.1.9 L1_ReturnCode Ghs_setBrush_ W (L1_HubID ghsinputPort, L1_UINT32 ghsSession,
GhsBrushStyle brushStyle, L1 BYTE r, L1 BYTE g, L1 BYTE b)

Sets the fill color for the given. ghsSession

Parameters

ghsInputPort | Address of the Graphical Host Server to send this request to.

ghsSession | SessionlD of the session for which to set the brush.

brushStyle | The style of the brush to use.

r | Red component of the color to set.

g | Green component of the color to set.

b | Blue component of the color to set.

Returns
L1_ReturnCode

¢ RC_OK the request was successful.

* RC_FAIL the request was not successful.

13.2.1.10 L1_ReturnCode Ghs_setCanvasSize W (L1_HubID ghsinputPort, L1_UINT32 width, L1_UINT32
height)

This functions sets the size of the canvas the Graphical Host Server provides.

Parameters

VirtuosoNext-Designer-1.0.0.0

232 CHAPTER 13. FILE DOCUMENTATION
ghsInputPort | Address of the Graphical Host Server to send this request to.
width | This specifies the horizontal size (x-axis) of the canvas in pixel.
height | This specified the vertial size (y-axis) of the canvas in pixel.
Returns

L1_ReturnCode

¢ RC_OK the request was successful.

* RC_FAIL the request was not successful.

13.2.1.11

L1_ReturnCode Ghs_setPen_W (L1_HubID ghsinputPort, L1_UINT32 ghsSession, GhsPenStyle

penStyle, L1 _BYTE lineWidth, L1 BYTE r, L1_.BYTE g, L1.BYTE b)

Sets the pen to use for the drawing operations in this session.

Parameters

ghsInputPort

Address of the Graphical Host Server to send this request to.

ghsSession

SessionID of the session for which to set the pen.

penStyle

Value of the enumeration GhsPenStyle defining what pen to use.

lineWidth

Width of the line in pixel.

r

Red component of the color to set.

8

Green component of the color to set.

b

Blue component of the color to set.

Returns

L1_ReturnCode

¢ RC_OK the request was successful.

* RC_FAIL the request was not successful.

13.2.1.12 L1_ReturnCode Ghs_setTextColour W (L1_HublID ghsinputPort, L1_UINT32 ghsSession,
L1_BYTE r, L1.BYTE g, L1.BYTE b)

This function sets the colour with which text will be drawn.

Parameters

ghsInputPort

Address of the Graphical Host Server to send this request to.

ghsSession

SessionID for the session to draw in.

r

Red component of the color to set.

8

Green component of the color to set.

b

Blue component of the color to set.

Returns

L1_ReturnCode

* RC_OK the request was successful.

¢ RC_FAIL the request was not successful.

VirtuosoNext-Designer-1.0.0.0

13.3. SRC/INCLUDE/GRAPHICALHOSTSERVICE/GRAPHICALHOSTSERVICE.H FILE

REFERENCE 233
13.3 src/include/GraphicalHostService/GraphicalHostService.h File Refer-
ence

#include <GraphicalHostService/GraphicalHostClient.h>

Macros

* #define GHS_VERSION 0x01010303

13.3.1 Macro Definition Documentation
13.3.1.1 #define GHS_VERSION 0x01010303

The L1_UINT32 value of is formatted the following way:

* MSByte: Major Version of the Kernel
e 23-16: Minor Version

* 15-8 : Patch-level

» LSByte: Release status:

— 0: Alpha

— 1: Beta

— 2: Release Candidate
3: Public Release

VirtuosoNext-Designer-1.0.0.0

Part Vi

Appendix

Bibliography

[1] Mingw-w64 - for 32 and 64 bit windows. https://sourceforge.net/projects/
mingw-w64/.

[2] Cmake — cross platform make. http://www.cmake.org/cmake/resources/software.
html.

https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html

Bibliography

[1] Mingw-w64 - for 32 and 64 bit windows. https://sourceforge.net/projects/
mingw-w64/.

[2] Cmake — cross platform make. http://www.cmake.org/cmake/resources/software.
html.

https://sourceforge.net/projects/mingw-w64/
https://sourceforge.net/projects/mingw-w64/
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html

Glossary

Abort Handler A Task specific function that gets invoked when a Task gets aborted due to a processor
exeption.. 23

Black Board An L1 Entity that represents a safe global data structure. It avoids that reading Tasks can
retrieve the data during it being updated. 10

Ceiling Priority An attribute to a resource that defines the maximum priority it may boost a Task to in
case of a priority inheritance operation. 21, 22

Cluster An ensemble of Nodes. 5

Context switch The process of swapping Task-specific information usually associated with CPU registers
during Task scheduling.. 25

Data Event An L1 Entity that combines data transfer and event notification. 10

Event A (binary) Event Entity to synchronise a single task with another task or a specific hardware pe-
ripheral through it’s driver task. 10

FIFO queue An L1 Entity used to pass fixed size data in a buffered way between tasks. 10
Hub The generic L1 entity of VirtuosoNext used to implement all L1 entities.. 5-7, 9—12, 15, 17, 21

Inter-node Link Point to point communication system between two nodes. It can be virtualised when the
communication medium is shared.. 7

Memory Block Queue An L1 Entity that is used to transfer blocks of memory without having to copy the
complete memory block. 10

Memory Pool An L1 Entity providing exclusive ownership to memory blocks with a predefined size. 10

Node A processing device in a network containing at least a CPU and its local memory.. 3, 5-8, 12, 15,
17, 19

Platform Hardware system with CPU, specific peripherals and development support.. 15
Port An L1 Entity used to synchronise and communicate between Tasks using Packets. 10

Priority A task attribute used by the scheduler to activate the tasks in the ready list in order of their
respective priority. 19-23, 25, 26, 29

Priority inheritance A term used in the context of the priotity based scheduling to reduce the blocking
time by tasks that have taken ownership of a resource entity. 21

242 Glossary

Priority Inversion Happens when a high priority Task has to wait for a low priority Task to release a
resoruce. In fact the priority of the high priority task gets lowered to the priority of the low priority
Task which holds the resource. Priority Inheritance is used to overcome this problem. 22

Resource An L1 Entity used to provide exclusive access to a logical resource. 10

Round Robin scheduling Non-pre-emptive scheduling following a policy of “first come — first served”.
Attention: often Round Robin means pre-emptive time slicing scheduling — this notion is not used in
this document. 25

Semaphore An L1 Entity used to synchronize tasks based upon counting Event to sychronise between
multiple tasks or hardware peripherals through it’s driver task. 10

Task Active RTOS Entity: a function with its private workspace. 3, 5-12, 15-17, 19-26, 29

VirtuosoNext-Designer-1.0.0.0

Acronyms

ISR Interrupt Service Routine. 9, 12, 15, 16, 23, 24, 26

RTOS Real-time Operating System. 3-5, 7, 12, 15

Index

__attribute___
L1_PacketData, 201

_struct_LL1_DataQueueElement_, 181

data, 181

dataSize, 181
_struct_LL1_DataQueueState_, 181

count, 182

elementSize, 182

elements, 182

head, 182

nbrOfElements, 182

tail, 182
_struct_L1_EventState_, 182

isSet, 183
_struct_L1_FifoState

Buffer, 183

Count, 183

DataParts, 184

Head, 184

Size, 184

Tail, 184
_struct_L1_Hub_, 184

HubControlFunction, 185

HubState, 185

183

—

HubSyncConditionFunction, 185
HubSynchronizeFunction, 185

HubType, 185
HubUpdateFunction, 185
WaitingList, 185

_struct_L1_MemoryBlockHeader_, 186

BlockSize, 186

ListElement, 186

ownerTaskID, 187

UsedBytes, 187
_struct_L1_MemoryBlock_, 185

Data, 186

Header, 186
_struct_LL1_PacketPoolState_, 189

PacketDataPool, 190

PacketList, 190

PacketPool, 190

Size, 190
_struct_L1_Packet_, 187

dataPart, 188

DestinationPortID, 188

errorCode, 188

inUse, 188

ListElement, 188

OwnerPool, 188

PendingRequestHandler, 189

PendingRequestListElement, 189

RequestingTaskID, 189

SequenceNumber, 189

ServicelD, 189

Status, 189

Timeout, 189

TimeoutTimer, 189
_struct_L1_Port_, 190

WaitingList, 191
_struct_L1_ResourceState_, 191

CeilingPriority, 191

Locked, 191

OwnerBoostedToPriority, 192

OwningTaskID, 192
_struct_L1_SemaphoreState_, 192

Count, 192
_struct_tracebuffer_, 193

paramO, 193

paraml, 193

param2, 193

param3, 193

AbortHandler
L1 TaskControlRecord, 202

Arguments
L1_TaskControlRecord, 202

Asynchronous Services, 54
L1_WaitForPacket, 55
L1_WaitForPacket_ NW, 55
L1_WaitForPacket_W, 56
L1_WaitForPacket_ WT, 57
L1_initialiseAsyncPacket, 54

b
GhsColour, 224

Base Types, 57

Black Board Hub, 71
BlackBoardHub_SyncCondition, 72
BlackBoardHub_Synchronize, 73

246

INDEX

BlackBoardHub_Update, 73
L1_Drv_Isr_UpdateBlackBoard_NW, 74
L1_Drv_Isr_UpdateDataEvent_NW, 75
L1_ReadBlackBoard, 76
L1_ReadBlackBoard_NW, 77
L1_ReadBlackBoard_W, 77
L1_ReadBlackBoard_WT, 78
L1_UpdateBlackBoard, 79
L1_UpdateBlackBoard_NW, 79
L1_WipeBoard, 80
L1_WipeBoard_NW, 80
L1_isBlackBoardHub, 76
BlackBoardHub_SyncCondition
Black Board Hub, 72
BlackBoardHub_Synchronize
Black Board Hub, 73
BlackBoardHub_Update
Black Board Hub, 73
BlockSize
_struct_L1_MemoryBlockHeader_, 186
L1_MemoryPool_HubState, 198
blockSize
L1_MemoryBlockQueue_HubState, 196
blocks
L1_MemoryBlockQueue_HubState, 196
board
L1_BlackBoard_ HubState, 194
bottom
GhsRect, 225
Buffer
_struct_L1_FifoState_, 183

CeilingPriority
_struct_L1_ResourceState
colour
GhsBrush, 223
GhsPen, 224
Context
L1_TaskControlRecord, 202
Count
_struct_L1_FifoState_, 183
_struct_L1_SemaphoreState_, 192
count
_struct_L1_DataQueueState_, 182
CriticalSectionWaitingList
L1_TaskControlRecord, 202
currentLoopCount
L1_WLM_State, 204
currentTime
L1_NodeStatusStructure, 199

191

—

Data
_struct_L1_MemoryBlock_, 186
data

_struct_L1_DataQueueElement_, 181
Data Event Hub, 81
DataEventHub_JIoctl, 82
DataEventHub_SyncCondition, 82
DataEventHub_Synchronize, 83
DataEventHub_Update, 83
L1_ClearDataEvent_ NW, 83
L1_ReadDataEvent_ NW, 84
L1 ReadDataEvent W, 84
L1_ReadDataEvent WT, 84
L1_UpdateDataEvent_NW, 85
Data-Queue Hub, 85
DataQueueHub_SyncCondition, 87
DataQueueHub_Synchronize, 87
DataQueueHub_Update, 87
L1_DataQueue_HubState, 86
L1_DataQueue_get, 88
L1_DataQueue_put, 88
L1_DataQueueElement, 86
L1_isDataQueueHub, 89
L1_isDataQueueHubEmpty, 89
L1_isDataQueueHubFull, 90
DataEventHub_Ioctl
Data Event Hub, 82
DataEventHub_SyncCondition
Data Event Hub, 82
DataEventHub_Synchronize
Data Event Hub, 83
DataEventHub_Update
Data Event Hub, 83
dataPart
_struct_L1_Packet_, 188
L1_DataEvent_HubState, 195
DataParts
_struct_L1_FifoState_, 184
DataQueueHub_SyncCondition
Data-Queue Hub, 87
DataQueueHub_Synchronize
Data-Queue Hub, 87
DataQueueHub_Update
Data-Queue Hub, 87
dataSize
_struct_L1_DataQueueElement_, 181
L1_BlackBoard_HubState, 194
L1_PacketData, 201
DestinationPortID
_struct_LL1_Packet_, 188
Developer Information, 67
L1_Hub_exchangePacketData, 71
L1_HubControlFunction, 69
L1_HubNodelD, 68
L1_HubStateUpdateFunction, 69
L1_HubSyncConditionFunction, 70
L1_HubSynchronizeFunction, 70

VirtuosoNext-Designer-1.0.0.0

INDEX

247

L1_id2localhub, 68

L1_isControlPacket, 68

L1_isLocalHublD, 68

L1_isPutPacket, 69
DumpTraceBuffer W

Stdio Host Server, 211

elementSize
_struct_L1_DataQueueState_, 182
elements
_struct_L1_DataQueueState_, 182
EntryPoint
L1_TaskControlRecord, 202
errorCode
_struct_L1_Packet_, 188
Event Hub, 90
EventSyncCondition, 93
EventUpdate, 93
L1_Drv_Isr_RaiseEvent_NW, 94
L1_Event_HubState, 93
L1_Event_State, 93
L1_RaiseEvent_NW, 95
L1_RaiseEvent_W, 95
L1_RaiseEvent_ WT, 96
L1_TestEvent_A, 96
L1_TestEvent_ NW, 97
L1_TestEvent_W, 98
L1_TestEvent_WT, 98
L1_isEventHub, 94
L1_isHubEventSet, 95
EventSyncCondition
Event Hub, 93
EventUpdate
Event Hub, 93

FIFO Hub, 99
Fifo_Ioctl, 102
FifoSyncCondition, 103
FifoSynchronize, 103
FifoUpdate, 103
L1_DequeueFifo_NW, 104
L1_DequeueFifo_W, 104
L1_DequeueFifo_WT, 105
L1_Drv_Isr_EnqueueFifo_NW, 105
L1_EnqueueFifo_NW, 106
L1_EnqueueFifo_W, 106
L1_EnqueueFifo_WT, 107
L1_Fifo_HubState, 102
L1_GetDataFromFifo_NW, 107
L1_GetDataFromFifo_W, 108
L1_GetDataFromFifo_ WT, 108
L1_PutDataToFifo_NW, 110
L1_PutDataToFifo_W, 110
L1_PutDataToFifo_ WT, 111

L1_isFifoHub, 109

L1_isHubFifoEmpty, 109

L1_isHubFifoFull, 110
Fifo_loctl

FIFO Hub, 102
FifoSyncCondition

FIFO Hub, 103
FifoSynchronize

FIFO Hub, 103
FifoUpdate

FIFO Hub, 103
freeBlocks

L1_MemoryBlockQueue_HubState, 197

FreeMemoryBlockList
L1_MemoryPool_HubState, 198

g
GhsColour, 224

GHS_VERSION
GraphicalHostService.h, 233
Ghs_closeSession._ W
GraphicalHostClient.h, 228
Ghs_drawCircle_ W
GraphicalHostClient.h, 228
Ghs_drawLine_ W
GraphicalHostClient.h, 229
Ghs_drawRect_W
GraphicalHostClient.h, 229
Ghs_drawText W
GraphicalHostClient.h, 229
Ghs_getCanvasSize_ W
GraphicalHostClient.h, 230
Ghs_getServerVersion_W
GraphicalHostClient.h, 230
Ghs_openSession_W
GraphicalHostClient.h, 230
Ghs_setBrush_ W
GraphicalHostClient.h, 231
Ghs_setCanvasSize_ W
GraphicalHostClient.h, 231
Ghs_setPen_ W
GraphicalHostClient.h, 232
Ghs_setTextColour_W
GraphicalHostClient.h, 232
GhsBrush, 223
colour, 223
style, 223
GhsBrushDiagonal
GhsTypes.h, 227
GhsBrushSolid
GhsTypes.h, 227
GhsBrushStyle
GhsTypes.h, 227
GhsColour, 223

VirtuosoNext-Designer-1.0.0.0

248

b, 224
g, 224
r, 224
GhsPen, 224
colour, 224
lineWidth, 224
style, 224
GhsPenSolid
GhsTypes.h, 227
GhsPenStyle
GhsTypes.h, 227
GhsRect, 225
bottom, 225
left, 225
right, 225
top, 225
GhsTypes.h
GhsBrushDiagonal, 227
GhsBrushSolid, 227
GhsBrushStyle, 227
GhsPenSolid, 227
GhsPenStyle, 227
GraphicalHostClient.h
Ghs_closeSession_W, 228
Ghs_drawCircle_W, 228
Ghs_drawLine_W, 229
Ghs_drawRect_W, 229
Ghs_drawText_W, 229
Ghs_getCanvasSize_W, 230
Ghs_getServerVersion_W, 230
Ghs_openSession_W, 230
Ghs_setBrush_W, 231
Ghs_setCanvasSize_ W, 231
Ghs_setPen_W, 232
Ghs_setTextColour_W, 232
GraphicalHostService.h
GHS_VERSION, 233

Hardware Abstraction Layer, 163

L1_deinitializeContextOfTask, 163

L1_enterCriticalSection, 164
L1_enterISR, 164

L1_hal_SMP_getCoreNumber, 165
L1_initializeContextOfTask, 165

L1_initializePlatform, 166
L1_leaveCriticalSection, 166
L1_leavelSR, 166
L1_restoreStatusRegister, 167
L1_saveStatusRegister, 168
L1_startTasks, 168
L1_switchContext, 168
Head
_struct_L1_FifoState_, 184
head

_struct_L1_DataQueueState_, 182

Header

_struct_L1_MemoryBlock_, 186

HubControlFunction
_struct_L1_Hub_, 185
HubState
_struct_L1_Hub_, 185
HubSyncConditionFunction
_struct_LL1_Hub_, 185
HubSynchronizeFunction
_struct_LL1_Hub_, 185
HubType
_struct_L1_Hub_, 185
HubUpdateFunction
_struct_L1_Hub_, 185

id
L1_HubNameTolD, 196
L1_TaskNameTolD, 204
inUse
_struct_L1_Packet_, 188
inputPortService
Internal Kernel API, 173
Internal Kernel API, 169
inputPortService, 173
L1_ABORTED, 172
L1_INACTIVE, 172
L1_InputPort, 172
L1_KernelEntryPoint, 174
L1_KernelLoop, 174

L1_KernelPacketPool_getPacket, 175

L1_List_insertTask, 175
L1_List_removeTask, 175
L1_NodeTimerTimeoutList, 179
L1_PortNodelD, 172
L1_STARTED, 172
L1_TaskStatus, 172
L1_abortTaskService, 173
L1_anyPacketService, 173
L1_buildAndInsertPacket, 173
L1_changeTaskPriority, 174
L1_id2localport, 171
L1_idleTask, 174
L1_initLinkDriver, 174
L1_isLocalPortID, 171

L1 isLocalTaskID, 171
L1_makeTaskReady, 175
L1_remoteService, 176

L1 _resetTimer, 176
L1_resumeTaskService, 176
L1_returnPacketService, 176
L1_returnToTask, 177
L1_runRTOS, 177
L1_runTask, 177

VirtuosoNext-Designer-1.0.0.0

INDEX

249

L1_runVirtuosoNext, 177
L1_setTimer, 178
L1_startTaskService, 178
L1_stopTaskService, 178
L1_suspendTaskService, 178
L1_thisNodelD, 172
L1_timerPacketService, 179
L1_timerPacketService_tick, 179
IntrinsicPriority
L1_TaskControlRecord, 202
isSet
_struct_L1_EventState_, 183
L1_DataEvent_HubState, 195
isSuspended
L1_TaskControlRecord, 202

kernelTickFrequencyHz
L1_NodeStatusStructure, 199

L1_ABORTED

Internal Kernel API, 172
L1_AcquireMemoryBlock_NW

Memory Block Queue Hub, 155
L1_AllocateMemoryBlock

Memory Pool Hub, 114
L1_AllocateMemoryBlock_NW

Memory Pool Hub, 115
L1_AllocateMemoryBlock_W

Memory Pool Hub, 116
L1_AllocateMemoryBlock_WT

Memory Pool Hub, 116
L1_AllocatePacket

Packet Pool Hub, 120
L1_AllocatePacket. NW

Packet Pool Hub, 121
L1_AllocatePacket_ W

Packet Pool Hub, 121
L1_AllocatePacket WT

Packet Pool Hub, 122
L1_BOOL, 63

L1_FALSE, 63

L1_TRUE, 63
L1_BYTE, 58

L1_BYTE_MAX, 58

L1_BYTE_MIN, 58
L1_BYTE_MAX

L1_BYTE, 58
L1_BYTE_MIN

L1_BYTE, 58
L1_BlackBoard_Board, 193

message, 194

messageNumber, 194
L1_BlackBoard_HubState, 194

board, 194

dataSize, 194

messageNumber, 194
L1_ClearDataEvent NW

Data Event Hub, 83
L1_DataEvent_HubState, 195

dataPart, 195

isSet, 195
L1_DataQueue_HubState

Data-Queue Hub, 86
L1_DataQueue_get

Data-Queue Hub, 88
L1_DataQueue_put

Data-Queue Hub, 88
L1_DataQueueElement

Data-Queue Hub, 86
L1_DeallocateMemoryBlock_NW

Memory Pool Hub, 117
L1_DeallocatePacket_ NW

Packet Pool Hub, 122
L1_DequeueFifo_ NW

FIFO Hub, 104
L1_DequeueFifo_W

FIFO Hub, 104
L1_DequeueFifo_ WT

FIFO Hub, 105
L1_DequeueMemoryBlock

Memory Block Queue Hub, 155
L1_DequeueMemoryBlock_NW

Memory Block Queue Hub, 156
L1_DequeueMemoryBlock_W

Memory Block Queue Hub, 156
L1_DequeueMemoryBlock_WT

Memory Block Queue Hub, 157
L1_Drv_Isr_EnqueueFifo NW

FIFO Hub, 105
L1_Drv_Isr_EnqueueMemoryBlock_NW

Memory Block Queue Hub, 157
L1_Drv_Isr_PutPacketToPort NW

Port Hub, 128
L1 Drv_Isr RaiseEvent NW

Event Hub, 94
L1_Drv_Isr_SignalSemaphore_ NW

Semaphore Hub, 147
L1_Drv_Isr_UpdateBlackBoard_ NW

Black Board Hub, 74
L1_Drv_Isr_UpdateDataEvent NW

Black Board Hub, 75
L1_EnqueueFifo_ NW

FIFO Hub, 106
L1_EnqueueFifo_W

FIFO Hub, 106
L1_EnqueueFifo_ WT

FIFO Hub, 107
L1_EnqueueMemoryBlock

VirtuosoNext-Designer-1.0.0.0

250

INDEX

Memory Block Queue Hub, 158
L1_EnqueueMemoryBlock_ NW

Memory Block Queue Hub, 158
L1_EnqueueMemoryBlock_W

Memory Block Queue Hub, 159
L1_EnqueueMemoryBlock_WT

Memory Block Queue Hub, 159
L1_ErrorCode, 65

L1_ErrorCode, 65

L1_ErrorCode_ MAX, 65

L1_ErrorCode, 65
L1_ErrorCode_ MAX

L1_ErrorCode, 65
L1_Event_HubState

Event Hub, 93
L1_Event_State

Event Hub, 93
L1_FALSE

L1_BOOL, 63
L1_Fifo_HubState

FIFO Hub, 102
L1_GetDataFromFifo NW

FIFO Hub, 107
L1_GetDataFromFifo_ W

FIFO Hub, 108
L1_GetDataFromFifo WT

FIFO Hub, 108
L1_GetDataFromPort_ NW

Port Hub, 128
L1_GetDataFromPort_ W

Port Hub, 129
L1_GetDataFromPort. WT

Port Hub, 129
L1_GetPacketFromPort_A

Port Hub, 130
L1_GetPacketFromPort NW

Port Hub, 131
L1_GetPacketFromPort_ W

Port Hub, 131
L1_GetPacketFromPort_ WT

Port Hub, 132
L1_Hub_exchangePacketData

Developer Information, 71
L1_HubControlFunction

Developer Information, 69
L1_HubNameTolD, 195

id, 196

name, 196

type, 196
L1_HubNamesTolDs

Task Management Operations, 53
L1_HubNodeID

Developer Information, 68
L1_HubStateUpdateFunction

Developer Information, 69
L1_HubSyncConditionFunction

Developer Information, 70
L1_HubSynchronizeFunction

Developer Information, 70
L1_INACTIVE

Internal Kernel API, 172
L1_INT16, 60

L1_INT16_MAX, 60

L1_INT16_MIN, 60
L1_INT16_MAX

L1_INT16, 60
L1_INT16_MIN

L1_INT16, 60
L1_INT32, 61

L1_INT32_MAX, 61

L1_INT32_MIN, 61
L1_INT32_MAX

L1_INT32, 61
L1_INT32_MIN

L1_INT32, 61
L1_INT64, 62

L1_INT64_MAX, 62

L1_INT64_MIN, 62
L1_INT64_MAX

L1_INT64, 62
L1_INT64_MIN

LI1_INT64, 62
L1_INTS, 59

L1_INT8_MAX, 59

L1_INT8_MIN, 59
L1_INT8_MAX

L1_INTS, 59
L1_INT8_MIN

L1_INTS, 59
L1_IOCTL_MBQ_ISR_SEND_BLOCK

Memory Block Queue Hub, 155
L1_InputPort

Internal Kernel API, 172
L1_KernelEntryPoint

Internal Kernel API, 174
L1_Kernell.oop

Internal Kernel API, 174
L1_KernelPacketPool_getPacket

Internal Kernel API, 175
L1_KernelTicks, 63

L1_KernelTicks MAX, 63

L1_KernelTicks_MIN, 63

Types related to Timing, 64
L1_KernelTicks2msec

Task Management Operations, 48
L1_KernelTicks MAX

L1_KernelTicks, 63
L1_KernelTicks_ MIN

VirtuosoNext-Designer-1.0.0.0

INDEX

251

L1_KernelTicks, 63
L1_List_insertTask

Internal Kernel API, 175
L1_List_removeTask

Internal Kernel API, 175
L1_LockResource. NW

Resource Hub, 142
L1 LockResource W

Resource Hub, 142
L1_LockResource_ WT

Resource Hub, 142
L1_MB_getMemory

Memory Block Queue Hub, 160
L1_MB_getNbrOfUsedBytes

Memory Block Queue Hub, 160
L1_MB_getSize

Memory Block Queue Hub, 160
L1_MB_setNbrOfUsedBytes

Memory Block Queue Hub, 161
L1_MemoryBlockQueue_HubState, 196

blockSize, 196

blocks, 196

freeBlocks, 197

memory, 197

nbrOfAcquiredBlocks, 197

nbrOfBlocks, 197

nbrOfUsedBlocks, 197

usedBlocks, 197
L1_MemoryPool_HubState, 197

BlockSize, 198

FreeMemoryBlockList, 198

MemoryBlockPool, 199

NumberOfBlocks, 199

OccupiedMemoryBlockList, 199
L1_MemoryPool_State

Memory Pool Hub, 114
L1_Msec2KernelTicks

Task Management Operations, 48
L1_NBR_OF_NODES

Task Management Operations, 53
L1_NodeldToNbrOfHubs

Task Management Operations, 53
L1_NodeldToNbrOfTasks

Task Management Operations, 54
L1_NodeStatusStructure, 199

currentTime, 199

kernelTickFrequencyHz, 199

maxNumberOfPacketsInRxPacketPool, 200

nodePacketCount, 200

numberOfDiscardedRxPackets, 200

numberOfHubs, 200

numberOflllegalServiceRequests, 200

numberOfTasks, 200

numberOfTimesSemaphoreMaxCountReached,
200
L1 NodeTimerTimeoutList
Internal Kernel API, 179
L1_PacketData, 200
__attribute__, 201
dataSize, 201
ListElement, 201
L1 PacketPool HubState
Packet Pool Hub, 120
L1_PacketPool_State
Packet Pool Hub, 124
L1_PortNodelD
Internal Kernel API, 172
L1_Priority, 64
L1_PutDataToFifo NW
FIFO Hub, 110
L1_PutDataToFifo_W
FIFO Hub, 110
L1_PutDataToFifo WT
FIFO Hub, 111
L1_PutDataToPort. NW
Port Hub, 133
L1 PutDataToPort W
Port Hub, 134
L1_PutDataToPort WT
Port Hub, 134
L1_PutPacketToPort_A
Port Hub, 135
L1 _PutPacketToPort NW
Port Hub, 136
L1_PutPacketToPort. W
Port Hub, 136
L1_PutPacketToPort WT
Port Hub, 137
L1_RaiseEvent NW
Event Hub, 95
L1_RaiseEvent_W
Event Hub, 95
L1 RaiseEvent WT
Event Hub, 96
L1_ReadBlackBoard
Black Board Hub, 76
L1_ReadBlackBoard_NW
Black Board Hub, 77
L1 _ReadBlackBoard W
Black Board Hub, 77
L1_ReadBlackBoard WT
Black Board Hub, 78
L1_ReadDataEvent_NW
Data Event Hub, 84
L1_ReadDataEvent W
Data Event Hub, 84
L1_ReadDataEvent_WT

VirtuosoNext-Designer-1.0.0.0

252

INDEX

Data Event Hub, 84
L1_Resource_HubState

Resource Hub, 141
L1 ResumeTask W

Task Management Operations, 48
L1_ReturnCode, 65

L1_ReturnCode, 66

L1_ReturnCode, 66

RC_FAIL, 66

RC_FAIL_END, 66

RC_FAIL_NULL_POINTER, 66

RC_FAIL_OUT_OF_MEM, 66

RC_FAIL_UNSUPPORTED, 66

RC_OK, 66

RC_TO, 66
L1_ReturnMemoryBlock_NW

Memory Block Queue Hub, 161
L1_STARTED

Internal Kernel API, 172
L1_Semaphore_HubState

Semaphore Hub, 147
L1_SignalSemaphore_ NW

Semaphore Hub, 148
L1_SignalSemaphore_W

Semaphore Hub, 149
L1_SignalSemaphore_ WT

Semaphore Hub, 149
L1_StartTask_W

Task Management Operations, 49
L1_StopTask_ W

Task Management Operations, 50
L1_SuspendTask_W

Task Management Operations, 51
L1_TRUE

L1_BOOL, 63
L1_TaskArguments, 64
L1_TaskControlRecord, 201

AbortHandler, 202

Arguments, 202

Context, 202

CriticalSectionWaitingList, 202

EntryPoint, 202

IntrinsicPriority, 202

isSuspended, 202

ListElement, 203

RequestPacket, 203

TaskID, 203

TaskInputPort, 203

TaskState, 203
L1_TaskNameTolD, 203

id, 204

name, 204
L1_TaskNamesTolDs

Task Management Operations, 54

L1_TaskStatus
Internal Kernel API, 172
L1 TestEvent A
Event Hub, 96
L1_TestEvent NW
Event Hub, 97
L1_TestEvent_W
Event Hub, 98
L1 TestEvent WT
Event Hub, 98
L1_TestSemaphore_A
Semaphore Hub, 150
L1_TestSemaphore NW
Semaphore Hub, 151
L1_TestSemaphore_W
Semaphore Hub, 151
L1_TestSemaphore_ WT
Semaphore Hub, 152
L1_Time, 62
L1_Time MAX, 62
L1_Time_MIN, 62
Types related to Timing, 64
L1_Time MAX
L1_Time, 62
L1_Time_ MIN
L1_Time, 62
L1_Timeout
Types related to Timing, 64
L1_UINT16, 59
L1_UINT16_MAX, 60
L1_UINT16_MIN, 60
L1_UINT16_MAX
L1_UINT16, 60
L1_UINT16_MIN
L1_UINT16, 60
L1_UINT32, 60
L1_UINT32_MAX, 61
L1_UINT32_MIN, 61
L1_UINT32_MAX
L1_UINT32, 61
L1_UINT32_MIN
L1_UINT32, 61
L1_UINT64, 61
L1_UINT64_MAX, 62
L1_UINT64_MIN, 62
L1_UINT64_MAX
L1_UINT64, 62
L1_UINT64_MIN
L1_UINT64, 62
L1_UINTS, 58
L1_UINT8_MAX, 59
L1_UINT8_MIN, 59
L1_UINT8_MAX
L1_UINTS, 59

VirtuosoNext-Designer-1.0.0.0

INDEX

253

L1_UINT8_MIN

L1_UINTS, 59
L1_UNUSED_PARAMETER

Task Management Operations, 46
L1_UnlockResource. NW

Resource Hub, 143
L1_UpdateBlackBoard

Black Board Hub, 79
L1_UpdateBlackBoard NW

Black Board Hub, 79
L1_UpdateDataEvent_NW

Data Event Hub, 85
L1_WLM_State, 204

currentLoopCount, 204

previousLoopCount, 204

t0, 204

t1, 205

terminationLoopCount, 205

workloadPeriodCount, 205

workloadPeriodLength, 205
L1_WaitForPacket

Asynchronous Services, 55
L1_WaitForPacket NW

Asynchronous Services, 55
L1_WaitForPacket W

Asynchronous Services, 56
L1_WaitForPacket WT

Asynchronous Services, 57
L1_WaitTask_WT

Task Management Operations, 52
L1_WaitUntil_ WT

Task Management Operations, 52
L1_WipeBoard

Black Board Hub, 80
L1_WipeBoard_NW

Black Board Hub, 80
L1_Yield W

Task Management Operations, 53
L1_abortTaskService

Internal Kernel API, 173
L1_anyPacketService

Internal Kernel API, 173
L1_buildAndInsertPacket

Internal Kernel API, 173
L1_changeTaskPriority

Internal Kernel API, 174
L1_deinitializeContextOfTask

Hardware Abstraction Layer, 163
L1_enterCriticalSection

Hardware Abstraction Layer, 164
L1_enterISR

Hardware Abstraction Layer, 164
L1_getCurrentKernelTickCount

Task Management Operations, 47

L1_getCurrentTaskld

Task Management Operations, 47
L1_getCurrentTaskPriority

Task Management Operations, 47
L1_getCurrentTaskStackSize

Task Management Operations, 47
L1_hal_SMP_getCoreNumber

Hardware Abstraction Layer, 165
L1 hubldToHubName

Task Management Operations, 47
L1_id2localhub

Developer Information, 68
L1_id2localport

Internal Kernel API, 171
L1 _idleTask

Internal Kernel API, 174
L1_initLinkDriver

Internal Kernel API, 174
L1_initialiseAsyncPacket

Asynchronous Services, 54
L1_initializeContextOfTask

Hardware Abstraction Layer, 165
L1_initializePlatform

Hardware Abstraction Layer, 166
L1 _isBlackBoardHub

Black Board Hub, 76
L1_isControlPacket

Developer Information, 68
L1_isDataQueueHub

Data-Queue Hub, 89
L1_isDataQueueHubEmpty

Data-Queue Hub, 89
L1_isDataQueueHubFull

Data-Queue Hub, 90
L1 isEventHub

Event Hub, 94
L1_isFifoHub

FIFO Hub, 109
L1_isHubEventSet

Event Hub, 95
L1_isHubFifoEmpty

FIFO Hub, 109
L1_isHubFifoFull

FIFO Hub, 110
L1_isHubPacketPoolPacketAvailable

Packet Pool Hub, 123
L1_isHubResourceLocked

Resource Hub, 141
L1_isHubSemaphoreSet

Semaphore Hub, 148
L1 _isLocalHubID

Developer Information, 68
L1_isLocalPortHub

Port Hub, 133

VirtuosoNext-Designer-1.0.0.0

254

INDEX

L1_isLocalPortID

Internal Kernel API, 171
L1 _isLocalTaskID

Internal Kernel API, 171
L1_isMemoryBlockQueueHub

Memory Block Queue Hub, 155
L1_isMemoryPoolHub

Memory Pool Hub, 114
L1_isPacketPoolHub

Packet Pool Hub, 123
L1_isPutPacket

Developer Information, 69
L1_isResourceHub

Resource Hub, 141
L1_isSemaphoreHub

Semaphore Hub, 148
L1_leaveCriticalSection

Hardware Abstraction Layer, 166
L1_leavelSR

Hardware Abstraction Layer, 166
L1_makeTaskReady

Internal Kernel API, 175
L1_remoteService

Internal Kernel API, 176
L1 _resetTimer

Internal Kernel API, 176
L1_restoreStatusRegister

Hardware Abstraction Layer, 167
L1_resumeTaskService

Internal Kernel API, 176
L1_returnPacketService

Internal Kernel API, 176
L1_returnToTask

Internal Kernel API, 177
L1_runRTOS

Internal Kernel API, 177
L1_runTask

Internal Kernel API, 177
L1_runVirtuosoNext

Internal Kernel API, 177
L1_saveStatusRegister

Hardware Abstraction Layer, 168
L1_setTimer

Internal Kernel API, 178
L1_startTaskService

Internal Kernel API, 178
L1_startTasks

Hardware Abstraction Layer, 168
L1_stopTaskService

Internal Kernel API, 178
L1_suspendTaskService

Internal Kernel API, 178
L1_switchContext

Hardware Abstraction Layer, 168

L1_taskldToTaskName
Task Management Operations, 51
L1_thisNodeID
Internal Kernel API, 172
L1_timerPacketService
Internal Kernel API, 179
L1_timerPacketService_tick
Internal Kernel API, 179
left
GhsRect, 225
lineWidth
GhsPen, 224
ListElement
_struct_L1_MemoryBlockHeader_, 186
_struct_L1_Packet_, 188
L1_PacketData, 201
L1_TaskControlRecord, 203
LocalPortSyncCondition
Port Hub, 138
LocalPortSynchronize
Port Hub, 138
Locked
_struct_LL1_ResourceState_, 191

maxNumberOfPacketsInRxPacketPool
L1_NodeStatusStructure, 200

memory
L1_MemoryBlockQueue_HubState, 197

Memory Block Queue Hub, 153
L1_AcquireMemoryBlock_NW, 155
L1_DequeueMemoryBlock, 155
L1_DequeueMemoryBlock_NW, 156
L1_DequeueMemoryBlock_W, 156
L1_DequeueMemoryBlock_WT, 157
L1_Drv_Isr_EnqueueMemoryBlock_NW, 157
L1_EnqueueMemoryBlock, 158
L1_EnqueueMemoryBlock_NW, 158
L1_EnqueueMemoryBlock_W, 159
L1_EnqueueMemoryBlock_WT, 159
L1_IOCTL_MBQ_ISR_SEND_BLOCK, 155
L1_MB_getMemory, 160
L1_MB_getNbrOfUsedBytes, 160
L1_MB_getSize, 160
L1_MB_setNbrOfUsedBytes, 161
L1_ReturnMemoryBlock_NW, 161
L1_isMemoryBlockQueueHub, 155
MemoryBlockQueueHub_IOCTL_CODES, 155
MemoryBlockQueueHub_loctl, 161
MemoryBlockQueueHub_SyncCondition, 162
MemoryBlockQueueHub_Synchronize, 162
MemoryBlockQueueHub_Update, 163

Memory Pool Hub, 112
L1_AllocateMemoryBlock, 114
L1_AllocateMemoryBlock_NW, 115

VirtuosoNext-Designer-1.0.0.0

INDEX

L1_AllocateMemoryBlock_W, 116

L1_AllocateMemoryBlock_WT, 116

L1_DeallocateMemoryBlock_NW, 117

L1_MemoryPool_State, 114

L1_isMemoryPoolHub, 114

MemoryPoolloctl, 117

MemoryPoolSyncCondition, 118

MemoryPoolSynchronize, 118

MemoryPoolUpdate, 118
MemoryBlockPool

L1_MemoryPool_HubState, 199
MemoryBlockQueueHub_IOCTL_CODES

Memory Block Queue Hub, 155
MemoryBlockQueueHub_Ioctl

Memory Block Queue Hub, 161
MemoryBlockQueueHub_SyncCondition

Memory Block Queue Hub, 162
MemoryBlockQueueHub_Synchronize

Memory Block Queue Hub, 162
MemoryBlockQueueHub_Update

Memory Block Queue Hub, 163
MemoryPoolloctl

Memory Pool Hub, 117
MemoryPoolSyncCondition

Memory Pool Hub, 118
MemoryPoolSynchronize

Memory Pool Hub, 118
MemoryPoolUpdate

Memory Pool Hub, 118
message

L1_BlackBoard_Board, 194
messageNumber

L1_BlackBoard_Board, 194

L1_BlackBoard_HubState, 194

name
L1_HubNameTolD, 196
L1_TaskNameTolD, 204
nbrOfAcquiredBlocks
L1_MemoryBlockQueue_HubState, 197
nbrOfBlocks
L1_MemoryBlockQueue_HubState, 197
nbrOfElements
_struct_L1_DataQueueState_, 182
nbrOfUsedBlocks
L1_MemoryBlockQueue_HubState, 197
nodePacketCount
L1 _NodeStatusStructure, 200
NumberOfBlocks
L1_MemoryPool_HubState, 199
numberOfDiscardedRxPackets
L1_NodeStatusStructure, 200
numberOfHubs
L1_NodeStatusStructure, 200

numberOflllegalServiceRequests
L1_NodeStatusStructure, 200
numberOfTasks
L1_NodeStatusStructure, 200
numberOfTimesSemaphoreMaxCountReached
L1_NodeStatusStructure, 200

OccupiedMemoryBlockList
L1_MemoryPool_HubState, 199
OwnerBoostedToPriority
_struct_L1_ResourceState_, 192
OwnerPool
_struct_L1_Packet_, 188
ownerTaskID
_struct_L1_MemoryBlockHeader_, 187
OwningTaskID
_struct_L1_ResourceState_, 192

Packet Pool Hub, 119

L1_AllocatePacket, 120

L1_AllocatePacket NW, 121

L1_AllocatePacket_W, 121

L1_AllocatePacket WT, 122

L1_DeallocatePacket_ NW, 122

L1_PacketPool_HubState, 120

L1_PacketPool_State, 124

L1_isHubPacketPoolPacketAvailable, 123

L1_isPacketPoolHub, 123

PacketPoolloctl, 124

PacketPoolSyncCondition, 124

PacketPoolSynchronize, 124

PacketPoolUpdate, 125
PacketDataPool

_struct_L1_PacketPoolState_, 190
PacketList

_struct_LL1_PacketPoolState_, 190
PacketPool

_struct_L1_PacketPoolState
PacketPoolloctl

Packet Pool Hub, 124
PacketPoolSyncCondition

Packet Pool Hub, 124
PacketPoolSynchronize

Packet Pool Hub, 124
PacketPoolUpdate

Packet Pool Hub, 125
param(

_struct_tracebuffer_, 193
param|

_struct_tracebuffer_, 193
param?2

_struct_tracebuffer_, 193
param3

_struct_tracebuffer_, 193

190

—

VirtuosoNext-Designer-1.0.0.0

256

INDEX

PendingRequestHandler
_struct_L1_Packet_, 189
PendingRequestListElement
_struct_LL1_Packet_, 189
Port Hub, 125

L1_Drv_Isr_PutPacketToPort_ NW, 128

L1_GetDataFromPort_NW, 128
L1_GetDataFromPort_W, 129

L1_GetDataFromPort_ WT, 129
L1_GetPacketFromPort_A, 130

L1_GetPacketFromPort NW, 131

L1_GetPacketFromPort_ W, 131

L1_GetPacketFromPort_ WT, 132

L1_PutDataToPort. NW, 133
L1_PutDataToPort_W, 134
L1_PutDataToPort. WT, 134
L1_PutPacketToPort_A, 135
L1_PutPacketToPort. NW, 136
L1_PutPacketToPort_W, 136
L1_PutPacketToPort_ WT, 137
L1_isLocalPortHub, 133
LocalPortSyncCondition, 138
LocalPortSynchronize, 138
previousLoopCount
L1_WLM_State, 204

GhsColour, 224
RC_FAIL
L1_ReturnCode, 66
RC_FAIL_END
L1 ReturnCode, 66
RC_FAIL_NULL_POINTER
L1_ReturnCode, 66
RC_FAIL_OUT_OF_MEM
L1_ReturnCode, 66
RC_FAIL_UNSUPPORTED
L1_ReturnCode, 66
RC_OK
L1_ReturnCode, 66
RC_TO
L1_ReturnCode, 66
RequestPacket
L1_TaskControlRecord, 203
RequestingTaskID
_struct_LL1_Packet_, 189
Resource Hub, 139
L1 LockResource NW, 142
L1 LockResource W, 142
L1_LockResource_ WT, 142
L1_Resource_HubState, 141
L1_UnlockResource_ NW, 143
L1_isHubResourceLocked, 141
L1_isResourceHub, 141

ResourceSyncCondition, 143
ResourceSynchronize, 144
ResourceUpdate, 144
ResourceSyncCondition
Resource Hub, 143
ResourceSynchronize
Resource Hub, 144
ResourceUpdate
Resource Hub, 144
right
GhsRect, 225

Semaphore Hub, 145

L1_Drv_Isr_SignalSemaphore_NW, 147

L1_Semaphore_HubState, 147

L1_SignalSemaphore_NW, 148

L1_SignalSemaphore_W, 149

L1_SignalSemaphore_WT, 149

L1_TestSemaphore_A, 150

L1_TestSemaphore_NW, 151

L1_TestSemaphore_W, 151

L1_TestSemaphore_WT, 152

L1_isHubSemaphoreSet, 148

L1_isSemaphoreHub, 148

SemaphoreSyncCondition, 152

SemaphoreUpdate, 153
SemaphoreSyncCondition

Semaphore Hub, 152
SemaphoreUpdate

Semaphore Hub, 153
SequenceNumber

_struct_LL1_Packet_, 189
ServicelD

_struct_LL1_Packet_, 189
Shs_closeFile_ W

Stdio Host Server, 212
Shs_getChar_W

Stdio Host Server, 212
Shs_getlnt_W

Stdio Host Server, 212
Shs_getString W

Stdio Host Server, 213
Shs_openFile_W

Stdio Host Server, 213
Shs_putChar_W

Stdio Host Server, 213
Shs_putlnt_ W

Stdio Host Server, 214
Shs_putString_ W

Stdio Host Server, 214
Shs_readFromFile W

Stdio Host Server, 214
Shs_writeToFile_ W

Stdio Host Server, 215

VirtuosoNext-Designer-1.0.0.0

INDEX

257

Size
_struct_L1_FifoState_, 184
_struct_L1_PacketPoolState_, 190

L1_getCurrentTaskStackSize, 47

L1_hubldToHubName, 47
L1_taskldToTaskName, 51

src/include/GraphicalHostService/GhsTypes.h, 227 ~ TaskID
src/include/GraphicalHostService/GraphicalHostClient.- L1_TaskControlRecord, 203

h, 227

TaskInputPort

src/include/GraphicalHostService/GraphicalHostService.- L1_TaskControlRecord, 203

h, 233
Status
_struct_L1_Packet_, 189
Stdio Host Server, 211
DumpTraceBuffer_W, 211
Shs_closeFile_W, 212
Shs_getChar_W, 212
Shs_getlnt_W, 212
Shs_getString_ W, 213
Shs_openFile_W, 213
Shs_putChar_W, 213
Shs_putlnt_W, 214
Shs_putString_W, 214
Shs_readFromFile W, 214
Shs_writeToFile_ W, 215
Stdio Host Server Component Description, 215
style
GhsBrush, 223
GhsPen, 224

t0
L1_WLM_State, 204

tl
L1_WLM_State, 205

Tail
_struct_L1_FifoState_, 184

tail
_struct_L1_DataQueueState_, 182

Task Management Operations, 45
L1_HubNamesTolDs, 53
L1_KernelTicks2msec, 48
L1_Msec2KernelTicks, 48
L1_NBR_OF_NODES, 53
L1_NodeldToNbrOfHubs, 53
L1_NodeldToNbrOfTasks, 54
L1_ResumeTask_W, 48
L1_StartTask_W, 49
L1_StopTask_W, 50
L1_SuspendTask_W, 51
L1 TaskNamesTolDs, 54
L1_UNUSED_PARAMETER, 46
L1_WaitTask_WT, 52
L1_WaitUntil_WT, 52
L1_Yield_W, 53
L1_getCurrentKernelTickCount, 47
L1_getCurrentTaskId, 47
L1_getCurrentTaskPriority, 47

TaskState
L1 TaskControlRecord, 203
terminationLoopCount
L1_WLM_State, 205
Timeout
_struct_L1_Packet_, 189
TimeoutTimer
_struct_LL1_Packet_, 189
top
GhsRect, 225
type
L1_HubNameTolD, 196
Types related to Timing, 64
L1_KernelTicks, 64
L1_Time, 64
L1_Timeout, 64

usedBlocks

L1_MemoryBlockQueue_HubState, 197

UsedBytes

_struct_L1_MemoryBlockHeader_, 187

VirtuosoNext Hub, 67

WaitingList
_struct_L1_Hub_, 185
_struct_L1_Port_, 191

workloadPeriodCount
L1_WLM_State, 205

workloadPeriodLength
L1_WLM_State, 205

VirtuosoNext-Designer-1.0.0.0

	I VirtuosoNext Fundamentals
	General Concepts
	Background of VirtuosoNext
	Physical structure of the target processing system
	Layered architecture of VirtuosoNext
	The logical view of the L1 Layer
	Principle of synchronization and communication
	Scheduling Tasks and Task interactions through the RTOS kernel

	Inter-Task interaction
	Application specific services
	A new concurrent programming paradigm
	Inter-Node interaction

	Functional Design of the L1 Layer
	Task interactions
	Logical view of Task
	Logical view of Packets
	Logical view of the generic L1 Hubs
	On scheduling for real-time
	On Timers
	On runtime errors
	Logical view of the Packet Pool

	Inter-node interactions
	Logical view of Link Drivers and inter-node interactions
	Logical view of the Router

	Multi-tasking
	Definition of multi-tasking
	Logical view of the Context Switch
	Logical view of the Kernel
	Logical view of the Scheduler

	II Installation Instructions
	Installation Instructions
	Folder Structure on Download Server
	VisualDesigner-VirtuosoNext Installation Instructions for MS-Windows
	Install 7zip
	MinGW Tool-chain for Windows
	Adding MinGW to the System Binary Search Path
	CMake Build System
	Installing VisualDesigner

	How to run an Example
	Troubleshooting
	mingw32-make not found

	Summary

	III VirtuosoNext
	Module Index
	Modules

	Data Structure Index
	Data Structures

	Module Documentation
	Task Management Operations
	Detailed Description
	Visual Designer
	Properties

	Macro Definition Documentation
	L1_UNUSED_PARAMETER

	Function Documentation
	L1_getCurrentKernelTickCount
	L1_getCurrentTaskId
	L1_getCurrentTaskPriority
	L1_getCurrentTaskStackSize
	L1_hubIdToHubName
	L1_KernelTicks2msec
	L1_Msec2KernelTicks
	L1_ResumeTask_W
	L1_StartTask_W
	L1_StopTask_W
	L1_SuspendTask_W
	L1_taskIdToTaskName
	L1_WaitTask_WT
	L1_WaitUntil_WT
	L1_Yield_W

	Variable Documentation
	L1_HubNamesToIDs
	L1_NBR_OF_NODES
	L1_NodeIdToNbrOfHubs
	L1_NodeIdToNbrOfTasks
	L1_TaskNamesToIDs

	Asynchronous Services
	Detailed Description
	Function Documentation
	L1_initialiseAsyncPacket
	L1_WaitForPacket
	L1_WaitForPacket_NW
	L1_WaitForPacket_W
	L1_WaitForPacket_WT

	Base Types
	Detailed Description

	L1_BYTE
	Detailed Description
	Variable Documentation
	L1_BYTE_MAX
	L1_BYTE_MIN

	L1_UINT8
	Detailed Description
	Variable Documentation
	L1_UINT8_MAX
	L1_UINT8_MIN

	L1_INT8
	Detailed Description
	Variable Documentation
	L1_INT8_MAX
	L1_INT8_MIN

	L1_UINT16
	Detailed Description
	Variable Documentation
	L1_UINT16_MAX
	L1_UINT16_MIN

	L1_INT16
	Detailed Description
	Variable Documentation
	L1_INT16_MAX
	L1_INT16_MIN

	L1_UINT32
	Detailed Description
	Variable Documentation
	L1_UINT32_MAX
	L1_UINT32_MIN

	L1_INT32
	Detailed Description
	Variable Documentation
	L1_INT32_MAX
	L1_INT32_MIN

	L1_UINT64
	Detailed Description
	Variable Documentation
	L1_UINT64_MAX
	L1_UINT64_MIN

	L1_INT64
	Detailed Description
	Variable Documentation
	L1_INT64_MAX
	L1_INT64_MIN

	L1_Time
	Detailed Description
	Variable Documentation
	L1_Time_MAX
	L1_Time_MIN

	L1_KernelTicks
	Detailed Description
	Variable Documentation
	L1_KernelTicks_MAX
	L1_KernelTicks_MIN

	L1_BOOL
	Detailed Description
	Macro Definition Documentation
	L1_FALSE
	L1_TRUE

	L1_Priority
	Detailed Description

	L1_TaskArguments
	Detailed Description

	Types related to Timing
	Detailed Description
	Typedef Documentation
	L1_KernelTicks
	L1_Time
	L1_Timeout

	L1_ErrorCode
	Detailed Description
	Typedef Documentation
	L1_ErrorCode

	Variable Documentation
	L1_ErrorCode_MAX

	L1_ReturnCode
	Detailed Description
	Macro Definition Documentation
	RC_FAIL
	RC_FAIL_END
	RC_FAIL_NULL_POINTER
	RC_FAIL_OUT_OF_MEM
	RC_FAIL_UNSUPPORTED
	RC_OK
	RC_TO

	Typedef Documentation
	L1_ReturnCode

	VirtuosoNext Hub
	Detailed Description

	Developer Information
	Detailed Description
	Macro Definition Documentation
	L1_HubNodeID
	L1_id2localhub
	L1_isControlPacket
	L1_isLocalHubID
	L1_isPutPacket

	Typedef Documentation
	L1_HubControlFunction
	L1_HubStateUpdateFunction
	L1_HubSyncConditionFunction
	L1_HubSynchronizeFunction

	Function Documentation
	L1_Hub_exchangePacketData

	Black Board Hub
	Detailed Description
	Hub Description
	Visual Designer
	Properties

	Function Documentation
	BlackBoardHub_SyncCondition
	BlackBoardHub_Synchronize
	BlackBoardHub_Update
	L1_Drv_Isr_UpdateBlackBoard_NW
	L1_Drv_Isr_UpdateDataEvent_NW
	L1_isBlackBoardHub
	L1_ReadBlackBoard
	L1_ReadBlackBoard_NW
	L1_ReadBlackBoard_W
	L1_ReadBlackBoard_WT
	L1_UpdateBlackBoard
	L1_UpdateBlackBoard_NW
	L1_WipeBoard
	L1_WipeBoard_NW

	Data Event Hub
	Detailed Description
	Visual Designer
	Properties

	Function Documentation
	DataEventHub_Ioctl
	DataEventHub_SyncCondition
	DataEventHub_Synchronize
	DataEventHub_Update
	L1_ClearDataEvent_NW
	L1_ReadDataEvent_NW
	L1_ReadDataEvent_W
	L1_ReadDataEvent_WT
	L1_UpdateDataEvent_NW

	Data-Queue Hub
	Detailed Description
	Visual Designer
	Properties

	Typedef Documentation
	L1_DataQueue_HubState
	L1_DataQueueElement

	Function Documentation
	DataQueueHub_SyncCondition
	DataQueueHub_Synchronize
	DataQueueHub_Update
	L1_DataQueue_get
	L1_DataQueue_put
	L1_isDataQueueHub
	L1_isDataQueueHubEmpty
	L1_isDataQueueHubFull

	Event Hub
	Detailed Description
	Visual Designer
	Properties

	Example
	Entities

	Source Code of Task1EntryPoint
	Source Code of Task2EntryPoint
	Macro Definition Documentation
	L1_Event_State

	Typedef Documentation
	L1_Event_HubState

	Function Documentation
	EventSyncCondition
	EventUpdate
	L1_Drv_Isr_RaiseEvent_NW
	L1_isEventHub
	L1_isHubEventSet
	L1_RaiseEvent_NW
	L1_RaiseEvent_W
	L1_RaiseEvent_WT
	L1_TestEvent_A
	L1_TestEvent_NW
	L1_TestEvent_W
	L1_TestEvent_WT

	FIFO Hub
	Detailed Description
	Visual Designer
	Properties

	Example
	Entities

	Source Code of Task1EntryPoint
	Source Code of Task2EntryPoint
	Typedef Documentation
	L1_Fifo_HubState

	Function Documentation
	Fifo_Ioctl
	FifoSyncCondition
	FifoSynchronize
	FifoUpdate
	L1_DequeueFifo_NW
	L1_DequeueFifo_W
	L1_DequeueFifo_WT
	L1_Drv_Isr_EnqueueFifo_NW
	L1_EnqueueFifo_NW
	L1_EnqueueFifo_W
	L1_EnqueueFifo_WT
	L1_GetDataFromFifo_NW
	L1_GetDataFromFifo_W
	L1_GetDataFromFifo_WT
	L1_isFifoHub
	L1_isHubFifoEmpty
	L1_isHubFifoFull
	L1_PutDataToFifo_NW
	L1_PutDataToFifo_W
	L1_PutDataToFifo_WT

	Memory Pool Hub
	Detailed Description
	Visual Designer
	Properties

	Example
	Entities
	MemoryPoolExampleTEP

	Macro Definition Documentation
	L1_isMemoryPoolHub
	L1_MemoryPool_State

	Function Documentation
	L1_AllocateMemoryBlock
	L1_AllocateMemoryBlock_NW
	L1_AllocateMemoryBlock_W
	L1_AllocateMemoryBlock_WT
	L1_DeallocateMemoryBlock_NW
	MemoryPoolIoctl
	MemoryPoolSyncCondition
	MemoryPoolSynchronize
	MemoryPoolUpdate

	Packet Pool Hub
	Detailed Description
	Visual Designer
	Properties

	Typedef Documentation
	L1_PacketPool_HubState

	Function Documentation
	L1_AllocatePacket
	L1_AllocatePacket_NW
	L1_AllocatePacket_W
	L1_AllocatePacket_WT
	L1_DeallocatePacket_NW
	L1_isHubPacketPoolPacketAvailable
	L1_isPacketPoolHub
	L1_PacketPool_State
	PacketPoolIoctl
	PacketPoolSyncCondition
	PacketPoolSynchronize
	PacketPoolUpdate

	Port Hub
	Detailed Description
	Visual Designer
	Properties

	Example
	Entities

	Source Code for Task1EntryPoint
	Source Code for Task2EntryPoint
	Function Documentation
	L1_Drv_Isr_PutPacketToPort_NW
	L1_GetDataFromPort_NW
	L1_GetDataFromPort_W
	L1_GetDataFromPort_WT
	L1_GetPacketFromPort_A
	L1_GetPacketFromPort_NW
	L1_GetPacketFromPort_W
	L1_GetPacketFromPort_WT
	L1_isLocalPortHub
	L1_PutDataToPort_NW
	L1_PutDataToPort_W
	L1_PutDataToPort_WT
	L1_PutPacketToPort_A
	L1_PutPacketToPort_NW
	L1_PutPacketToPort_W
	L1_PutPacketToPort_WT
	LocalPortSyncCondition
	LocalPortSynchronize

	Resource Hub
	Detailed Description
	Visual Designer
	Properties

	Example
	Entities

	Source Code of Task1EntryPoint
	Source Code of Task2EntryPoint
	Typedef Documentation
	L1_Resource_HubState

	Function Documentation
	L1_isHubResourceLocked
	L1_isResourceHub
	L1_LockResource_NW
	L1_LockResource_W
	L1_LockResource_WT
	L1_UnlockResource_NW
	ResourceSyncCondition
	ResourceSynchronize
	ResourceUpdate

	Semaphore Hub
	Detailed Description
	Visual Designer
	Properties

	Example
	Entities

	Source Code of Task1EntryPoint
	Source Code of Task2EntryPoint
	Typedef Documentation
	L1_Semaphore_HubState

	Function Documentation
	L1_Drv_Isr_SignalSemaphore_NW
	L1_isHubSemaphoreSet
	L1_isSemaphoreHub
	L1_SignalSemaphore_NW
	L1_SignalSemaphore_W
	L1_SignalSemaphore_WT
	L1_TestSemaphore_A
	L1_TestSemaphore_NW
	L1_TestSemaphore_W
	L1_TestSemaphore_WT
	SemaphoreSyncCondition
	SemaphoreUpdate

	Memory Block Queue Hub
	Detailed Description
	Visual Designer
	Properties

	Macro Definition Documentation
	L1_isMemoryBlockQueueHub

	Enumeration Type Documentation
	MemoryBlockQueueHub_IOCTL_CODES

	Function Documentation
	L1_AcquireMemoryBlock_NW
	L1_DequeueMemoryBlock
	L1_DequeueMemoryBlock_NW
	L1_DequeueMemoryBlock_W
	L1_DequeueMemoryBlock_WT
	L1_Drv_Isr_EnqueueMemoryBlock_NW
	L1_EnqueueMemoryBlock
	L1_EnqueueMemoryBlock_NW
	L1_EnqueueMemoryBlock_W
	L1_EnqueueMemoryBlock_WT
	L1_MB_getMemory
	L1_MB_getNbrOfUsedBytes
	L1_MB_getSize
	L1_MB_setNbrOfUsedBytes
	L1_ReturnMemoryBlock_NW
	MemoryBlockQueueHub_Ioctl
	MemoryBlockQueueHub_SyncCondition
	MemoryBlockQueueHub_Synchronize
	MemoryBlockQueueHub_Update

	Hardware Abstraction Layer
	Detailed Description
	Function Documentation
	L1_deinitializeContextOfTask
	L1_enterCriticalSection
	L1_enterISR
	L1_hal_SMP_getCoreNumber
	L1_initializeContextOfTask
	L1_initializePlatform
	L1_leaveCriticalSection
	L1_leaveISR
	L1_restoreStatusRegister
	L1_saveStatusRegister
	L1_startTasks
	L1_switchContext

	Internal Kernel API
	Detailed Description
	Macro Definition Documentation
	L1_id2localport
	L1_isLocalPortID
	L1_isLocalTaskID
	L1_PortNodeID
	L1_thisNodeID

	Typedef Documentation
	L1_InputPort

	Enumeration Type Documentation
	L1_TaskStatus

	Function Documentation
	inputPortService
	L1_abortTaskService
	L1_anyPacketService
	L1_buildAndInsertPacket
	L1_changeTaskPriority
	L1_idleTask
	L1_initLinkDriver
	L1_KernelEntryPoint
	L1_KernelLoop
	L1_KernelPacketPool_getPacket
	L1_List_insertTask
	L1_List_removeTask
	L1_makeTaskReady
	L1_remoteService
	L1_resetTimer
	L1_resumeTaskService
	L1_returnPacketService
	L1_returnToTask
	L1_runRTOS
	L1_runTask
	L1_runVirtuosoNext
	L1_setTimer
	L1_startTaskService
	L1_stopTaskService
	L1_suspendTaskService
	L1_timerPacketService
	L1_timerPacketService_tick

	Variable Documentation
	L1_NodeTimerTimeoutList

	Data Structure Documentation
	_struct_L1_DataQueueElement_ Struct Reference
	Detailed Description
	Field Documentation
	data
	dataSize

	_struct_L1_DataQueueState_ Struct Reference
	Detailed Description
	Field Documentation
	count
	elements
	elementSize
	head
	nbrOfElements
	tail

	_struct_L1_EventState_ Struct Reference
	Detailed Description
	Field Documentation
	isSet

	_struct_L1_FifoState_ Struct Reference
	Detailed Description
	Field Documentation
	Buffer
	Count
	DataParts
	Head
	Size
	Tail

	_struct_L1_Hub_ Struct Reference
	Detailed Description
	Field Documentation
	HubControlFunction
	HubState
	HubSyncConditionFunction
	HubSynchronizeFunction
	HubType
	HubUpdateFunction
	WaitingList

	_struct_L1_MemoryBlock_ Struct Reference
	Detailed Description
	Field Documentation
	Data
	Header

	_struct_L1_MemoryBlockHeader_ Struct Reference
	Detailed Description
	Field Documentation
	BlockSize
	ListElement
	ownerTaskID
	UsedBytes

	_struct_L1_Packet_ Struct Reference
	Detailed Description
	Field Documentation
	dataPart
	DestinationPortID
	errorCode
	inUse
	ListElement
	OwnerPool
	PendingRequestHandler
	PendingRequestListElement
	RequestingTaskID
	SequenceNumber
	ServiceID
	Status
	Timeout
	TimeoutTimer

	_struct_L1_PacketPoolState_ Struct Reference
	Detailed Description
	Field Documentation
	PacketDataPool
	PacketList
	PacketPool
	Size

	_struct_L1_Port_ Struct Reference
	Detailed Description
	Field Documentation
	WaitingList

	_struct_L1_ResourceState_ Struct Reference
	Detailed Description
	Field Documentation
	CeilingPriority
	Locked
	OwnerBoostedToPriority
	OwningTaskID

	_struct_L1_SemaphoreState_ Struct Reference
	Detailed Description
	Field Documentation
	Count

	_struct_tracebuffer_ Struct Reference
	Detailed Description
	Field Documentation
	param0
	param1
	param2
	param3

	L1_BlackBoard_Board Struct Reference
	Detailed Description
	Field Documentation
	message
	messageNumber

	L1_BlackBoard_HubState Struct Reference
	Detailed Description
	Field Documentation
	board
	dataSize
	messageNumber

	L1_DataEvent_HubState Struct Reference
	Detailed Description
	Field Documentation
	dataPart
	isSet

	L1_HubNameToID Struct Reference
	Detailed Description
	Field Documentation
	id
	name
	type

	L1_MemoryBlockQueue_HubState Struct Reference
	Detailed Description
	Field Documentation
	blocks
	blockSize
	freeBlocks
	memory
	nbrOfAcquiredBlocks
	nbrOfBlocks
	nbrOfUsedBlocks
	usedBlocks

	L1_MemoryPool_HubState Struct Reference
	Detailed Description
	Field Documentation
	BlockSize
	FreeMemoryBlockList
	MemoryBlockPool
	NumberOfBlocks
	OccupiedMemoryBlockList

	L1_NodeStatusStructure Struct Reference
	Detailed Description
	Field Documentation
	currentTime
	kernelTickFrequencyHz
	maxNumberOfPacketsInRxPacketPool
	nodePacketCount
	numberOfDiscardedRxPackets
	numberOfHubs
	numberOfIllegalServiceRequests
	numberOfTasks
	numberOfTimesSemaphoreMaxCountReached

	L1_PacketData Struct Reference
	Detailed Description
	Member Function Documentation
	__attribute__

	Field Documentation
	dataSize
	ListElement

	L1_TaskControlRecord Struct Reference
	Detailed Description
	Field Documentation
	AbortHandler
	Arguments
	Context
	CriticalSectionWaitingList
	EntryPoint
	IntrinsicPriority
	isSuspended
	ListElement
	RequestPacket
	TaskID
	TaskInputPort
	TaskState

	L1_TaskNameToID Struct Reference
	Detailed Description
	Field Documentation
	id
	name

	L1_WLM_State Struct Reference
	Detailed Description
	Field Documentation
	currentLoopCount
	previousLoopCount
	t0
	t1
	terminationLoopCount
	workloadPeriodCount
	workloadPeriodLength

	IV Stdio Host Service
	Module Index
	Modules

	Module Documentation
	Stdio Host Server
	Detailed Description
	Function Documentation
	DumpTraceBuffer_W
	Shs_closeFile_W
	Shs_getChar_W
	Shs_getInt_W
	Shs_getString_W
	Shs_openFile_W
	Shs_putChar_W
	Shs_putInt_W
	Shs_putString_W
	Shs_readFromFile_W
	Shs_writeToFile_W

	Stdio Host Server Component Description

	V Graphical Host Service
	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	GhsBrush Struct Reference
	Detailed Description
	Field Documentation
	colour
	style

	GhsColour Struct Reference
	Detailed Description
	Field Documentation
	b
	g
	r

	GhsPen Struct Reference
	Detailed Description
	Field Documentation
	colour
	lineWidth
	style

	GhsRect Struct Reference
	Detailed Description
	Field Documentation
	bottom
	left
	right
	top

	File Documentation
	src/include/GraphicalHostService/GhsTypes.h File Reference
	Enumeration Type Documentation
	GhsBrushStyle
	GhsPenStyle

	src/include/GraphicalHostService/GraphicalHostClient.h File Reference
	Function Documentation
	Ghs_closeSession_W
	Ghs_drawCircle_W
	Ghs_drawLine_W
	Ghs_drawRect_W
	Ghs_drawText_W
	Ghs_getCanvasSize_W
	Ghs_getServerVersion_W
	Ghs_openSession_W
	Ghs_setBrush_W
	Ghs_setCanvasSize_W
	Ghs_setPen_W
	Ghs_setTextColour_W

	src/include/GraphicalHostService/GraphicalHostService.h File Reference
	Macro Definition Documentation
	GHS_VERSION

	VI Appendix
	References
	Glossary
	Index

