
OpenCookbook: An integrated and formalised
environment for systems engineering
Eric Verhulst, Vitaliy Mezhuyev, Oliver Faust

Open License Society, Altreonic
Eric.Verhulst, Oliver.Faust [at] Altreonic.com

Vitaliy.Mezhuyev [at] OpenLicenseSociety.org

Abstract

This paper describes the theoretical principles and the
practical implementation of an open environment intended for
requirements and specifications capturing in the systems
engineering domain, but also covering modeling and
workplan development till final release. It features a coherent
and unified systems engineering methodology based on the
Interacting Entities paradigm. It was thought out for the
development of embedded systems, but it was proven to be an
effective tool for a wide range of system domains. In order to
support it, a generic web portal environment was developed,
called OpenCookbook. It can be tailored to the needs of a
specific organisation as well as accommodate engineering
standards like IEC61508.

1. Introduction

Systems Engineering (SE) is considered to be the process that
transforms a need into a working system. The need is often not
expressed clearly enough and it is the result of the interaction
of many stakeholders, each of them expressing their
“requirements” in a specific domain language. None of the
stakeholders will have a complete view outside his domain of
interest and often will not be able to imagine what will be the
final system. The problem is partly due to the fact that we use
natural language and that our domains of expertise are always
limited. In order to overcome these obstacles, formalization of
expressions is required and this is what OpenCookbook
attempts to support in the domain of SE. One type of
formalization is formalization of natural language; the other
type is the separation of concerns on the base of certain
systems grammar.

An important aid in the formalization of such a SE process is
that at the abstract and domain independent level, common
concepts and a common structural architecture can be used.
We call this the meta-ontological level (or conceptual level
for easier understanding) vs. the often domain specific
ontological level. Such a level is needed because the
comprehension of natural language is context, and hence
domain dependent, whereas at the level of reasoning about
systems in the abstract, the domain specific differences can
often be ignored. The meta-ontological level is described by a
unified systems grammar. It includes the concepts needed to
define requirements, specifications, architectures and work
plans when developing a system. The novelty of our approach
is that the whole SE process is considered and approached in a

formalized way. The approach taken was empirically proven
by the development of a supporting tool and applying it to
divergent domains.
The paper is organized as follows. The motivation behind the
formalization of concepts and their relations are described in
the next chapter. It also presents the link between the abstract,
domain independent meta-ontological level and the domain
specific ontological level. The concepts and the unified
systems grammar itself are further described in the subsequent
chapters. OpenCookbook as a web portal supporting the
proposed formalized SE process is presented next. This
formalization can also guide the definition and implementation
of a concrete instantiation of a SE process. Case studies,
which demonstrate that this approach can be applied to
different domains, conclude this paper.

1.1 Intentional approach to systems engineering
Systems Engineering is the process that transforms a need into
a working system. Initially we describe what a system is from
the intentional perspective. From this perspective we can
derive what the system is supposed to be (or to do). Another
perspective is the architectural one. This perspective shows us
how the system should be implemented. This is exemplified in
the unified systems grammar as depicted in Figure 1.
At the highest requirement level a System is supposed to
achieve its mission. In order to achieve the mission, a System
will be composed of sub-elements (often called modules or
subsystems). These elements are called Entities and the way
they relate to each other are called Interactions. The term
system is used when the interacting entities fulfill a
functionality, which each individual entity does not fulfill.
Note, that such a composing entity can be a system in its own
right, hence the concept is hierarchical.
For example, a plane is a system of interacting entities (i.e.
body, wings, chassis etc.) which separately are aspiring to fall,
but which can fly as a whole.

As entities and interactions form a system architecture, all
requirements achieve the mission of a system as an aggregate.
We make an explicit distinction between requirements and
specifications. Specifications are linked with test cases and
hence specifications are measurable instances of the initial
(often imprecise) requirements. It is possible to have several
systems with common requirements, but with different
specifications (e.g. depending on boundary conditions like
cost). Hence, the input for the architectural design is taken
from the specifications and not directly from the requirements.
Note that the use of the terms requirements and specifications
in practice is not always consistent and the terms are often
confused. Some people even use the term “requirement
specifications”, a rather ambigious one. Hence, we
consistently use “requirements” as the required systems
properties are not linked with a measurable test case. Once this
is done, we can speak of “specifications”.

From the structural or architectural perspective a system is
defined by entities and interactions between the entities.

Copyrights www.Altreonic.com 28.01.2009 1

http://www.Altreonic.com/
mailto:Eric.Verhulst@OpenLicenseSociety.org
mailto:Vitaliy.Mezhuyev@OpenLicenseSociety.org
mailto:Eric.Verhulst@OpenLicenseSociety.org
mailto:Eric.Verhulst@OpenLicenseSociety.org

An Entity is defined by its own attributes and functions. An
attribute is an intrinsic characteristic of an entity. Attributes
reflect qualitative and quantitative properties of an entity (e.g.
color, speed, size etc.) and have their own names, types and
values. For example, the name and the purpose are descriptive
attributes of an any entity. A function defines the intended

behavior of an entity. An entity can have more than one
function. We use the term function in two meanings: 1) the
traditional “use case” of entities; 2) the entities' internal
behavior.
Functions define the internal behavior as opposed to external
interactions. In a first approach, interactions are defined using
a discrete time model, i.e. implemented as a sequence of
messages. Interactions are caused by events and are
implemented by messages. An interaction structure
corresponds to some protocol and can be defined with inputs
and outputs by a functional flow diagram. A state diagrams
can be used to show event-function pairs on the transition
lines between states.

An event is any transition that can take place in a system. An
event can be the result of an entity attribute change (i.e. of
changing the entity's state). A message can cause and can be
caused by an event whereby the interaction between entities
results in changes to their attributes and their state. E.g. in
software systems an interaction implies some form of data
transfer or messages between entities. Such messages can also
invoke appropriate functions internal to the entity.
Interfaces belong to the structural part of an entity. An
interface is the boundary domain of interaction between an

entity and another entity. Interfaces can have input or output
types, which define data, energy or information directions at
interaction areas between the entities. Examples are an electric
socket (input: electrical power or current), a fuel pipeline
(output from the tank) and a USB port (input-output).
Interfaces and interactions are related by the fact that an

interface transforms an internal entity event into an external
message. A second entity will receive such a message through
its interface, transforming the external message into an
internal form. An interface can also filter received messages
and invoke appropriate functions internal to the entity. A data
transfer is the simplest application of such functions. It should
be noted that while an interaction happens between two
entities, the medium that hosts the interaction can be a system
in its own right. And we need take into account that its
properties can also affect the system behavior. Examples are
Internet backbones, long hydraulic channels, transmission
lines, etc. One should also note that the use of the terms
“events”, “messages” and “protocols” is more appropiate in
the domain of embedded systems but in a general an
interaction can also be an energy or force transfer between
mechanical components. For simulation purposes this will
make no difference.

Another important view in systems engineering is the project
development view based on the architectural decomposition of
the system. In such an interpretation once entities are
identified, they are grouped into work packages for project
planning. Each work package is divided into tasks with

Copyrights www.Altreonic.com 28.01.2009 2

Figure 1: Systems grammar in OpenCookbook (core concepts)

http://www.Altreonic.com/

attributes, such as duration, resources, milestones, deadlines,
responsible, etc. Change requests can be considered as well.
Defining the timeline of the workplan (i.e. deadlines, periods,
limits etc.) and the workplan tasks are important system
development stages. Selecting such measures and attaching
them to work packages leads to workplan specifications.

1.2 Relationships between meta-ontological and
ontological levels

As mentioned above, a system is described at the highest level
by its requirements. Requirements are captured at the initial
point of the system definition process and must be
transformed into structured architectural descriptions (i.e.
entities-interactions, attributes-values, event-function pairs),
which in turn should result in measurable specifications.
Any entity has attributes with values of the appropriate type.
For example if we consider the requirement 'the acceleration
of the car is as least as high as the top 5 competitors' we have
an entity decomposition (‘car’), which maps onto an attribute-
value decomposition (with typification of attribute
'acceleration' in the type ‘at least high as’ and value 'top 5').
This means that at the cognitive level the qualitative
requirements produce entities, interactions (i.e. architectural
descriptions) and specifications (i.e. normal cases, test cases,
failure cases), work plans, and also issues to be resolved. The
order of this sequence is essential and constitutes a process of
requirements refinement and its concrete definition.

Using a coherent and unified systems grammar provides us
with the basis for building cognitive models from initially
disjoint user requests. Requirements and specifications are not
just a collection of statements, but represent a cognitive
model of the system with a structure corresponding to the
system grammar's relations.
Capturing requirements and specifications is a process of
system description. Specifications are derived from the more
general requirements. This is necessary in order to make
requirements verifiable by measurements. E.g. the initial
requirement 'the car should be fast' can be transformed into the
specifications 'accelerating from 0 to 100 km/h in 6 seconds’
and ‘having a top speed of at least 200 km/h'.

Specifications are often formulated with the (hidden)
assumption that the system operates without observable or
latent problems. We call this the “normal cases”. However,
this is not enough. Specifications are met when they pass “test
cases”, which often describe the specific tests that must
executed in order to verify the specifications. In
correspondence to test cases we define “failure cases”, i.e. a
sequence of actions that can result in a system fault and for
which the system design should cater.

2. Systems Grammar

Copyrights www.Altreonic.com 28.01.2009 3

Figure 2: Using the Interacting Entities paradigm for System Definition

S
ys

te
m

 g
ra

m
m

a
r

Require
ment

Fault Cases

Test Cases

Specifications

Issues

Normal Cases

Conceptual
Level

Stakeholders
Level

Requirement

Requirement

Requirement
Requirement

In
te

ra
ct

in
g

 e
n

ti
ti

es
 p

a
ra

d
ig

m

Entities +
Interactions

Entities +Interactions

Entities +
Interactions

Entities +

Interactions

Entitie
s +

Interactio
ns

System

General System Definition Process

Architectural
Level

S
ys

te
m

 g
ra

m
m

a
r

Require
ment

Fault Cases

Test Cases

Specifications

Issues

Normal Cases

Conceptual
Level

Stakeholders
Level

Requirement

Requirement

Requirement
Requirement

In
te

ra
ct

in
g

 e
n

ti
ti

es
 p

a
ra

d
ig

m

Entities +
Interactions

Entities +Interactions

Entities +
Interactions

Entities +

Interactions

Entitie
s +

Interactio
ns

System

General System Definition Process

Architectural
Level

http://www.Altreonic.com/

2.1 OpenCookbook as a supporting framework
OpenCookbook is a framework that supports the process of
defining a system under development. It applies the unified
systems grammar as follows. In OpenCookbook a system is
defined and developed in an incremental and iterative way by
numerous stakeholders. The systems grammar helps to
structure, i.e. formalizing the thought process. During this
process the OpenCookbook environment becomes the host for
a living system specification.
Because of the need for distributed teamwork, we decided to
implement OpenCookbook as a web-based environment
supporting following activities in the course of a project
developing a system or product:

• Requirements capturing
• Specifications capturing
• defining Normal and Test Cases
• defining Failure Cases and Issues
• defining Work Packages and Tasks (development,

verification, test and validation)
• Architectural decomposition in Entities and

Interactions (see Fig. 1).

All these activities are supported by a common Repository in
order to facilitate a coherent systems model development. In a
first step the model can be expressed in a natural language.
Subsequent steps have to refine and formalize the model. The
Repository is based on the unified systems grammar which
acts as the meta-model and defines a semantically coherent
framework. This frameworks help a designer in defining the
system to be engineered. At each moment the up to date
version of a the project documents can be generated. The
implementation of OpenCookbook is based on a Content
Management System (CMS) resulting in a web portal that is
specific for each project. Initially we used an object-oriented
database for the prototype implementation in the Plone CMS.
The production verison was implementation in the Drupal
CMS, benefiting from its powerful taxonomy support. The use
of single repository with a coherent systems grammar enables
the paramount requirement of traceability found in most
engineering standards. Whenever an item is changed, it allows
to trace it dependents and precedents by the use of a query.

OpenCookbook has been developed with the following
requirements:

• Scalability – must support the development from
small and simple to very large and complex systems.

• Generic – must be capable of modeling almost any
type of system, independently of the domain.

• Extensibility – must offer the possibility of changing
and modifying the meta-model (i.e. structure of
repository based on the system grammar). This leads
to the creation of domain-specific adaptations.

• Minimal semantics – the initial system must support
the minimum semantics of the meta-model. However,
OpenCookbook can have extensions later on.

• Isomorphism – must support structural conformity
between the architectural model and a given domain.

• System analysis – must allow the analysis of the
system under development using a formalized model
checker, supporting:

o The analysis of a requirements consistency,
a completeness of the system description
and a verification of the time and milestone
dependencies in the work plan.

o Signaling contradictory requirements and
allowing choices on the basis of
requirements priority (see Fig. 3).

o Checking conformity between
specifications and test cases.

o Categorical analyses by different criteria
(e.g. all requirements concerning specific
entities, all safety requirements, all tasks
need to solve to this date etc.).

o Supporting "complexity measures":
 Of entities (e.g. amount of

attributes and functions, quantity of
relations with other entities).

 Of the system (e.g. general amount
of entities, power of relations as
amount of interactions / amount of
entities, entities / category,
coherence etc.).

 Of tasks in the work packages (e.g.
amount of task / time
implementation, amount of task /
developer etc.).

2.2 Principles of the Systems Grammar
A systems grammar is defined as a set of concepts which
provide the base for a coherent and complete description of a
system using natural language constructs. The systems
grammar in OpenCookbook describes a project in three
orthogonal views: requirements and specifications (conceptual
view), architectural (structural or modeling view) and
planning (development view) views. It is based on the
following principles:

• A Systems Engineering approach.
• The Interacting Entities paradigm.
• A distinction between the ontological and meta-

ontological levels in the systems definition.

The ontological level defines concepts related to real systems
(physical, chemical, software, hardware etc.). E.g. all entities
and interactions that are architecture related. The meta-
ontological level defines generic concepts and is expressed by
notions such as entity, interaction, requirements,
specifications, test cases etc.

The cognitive model is the initial point for the architectural
model definition. The transition from the cognitive into the

Copyrights www.Altreonic.com 28.01.2009 4

http://www.Altreonic.com/

architectural level is achieved by methods similar to object-
oriented design (decomposition, abstraction, encapsulation,
typification, structuring, hierarchy defining etc.).

The systems grammar, depicted in Fig. 1, as well as its
elements and implementation in OpenCookbook are described
in detailed in the following subsections.

2.2.1 Requirements classifications

Requirements must provide a full description of what the
system needs to offer, but in an abstract, preferably
implementation independent way. System requirements are
classified by different criteria:

• Target or intentional requirements that express the
purpose of entities and their interactions.

• Structural requirements that reflect how the system
aggregates entities and their interactions.

• Functional requirements that reflect the internal and
external behavior of the entities.

Note, in general two types of knowledge exist: 1) conceptual
and 2) procedural (or methodological). This means that
knowledge relates to the "what" but also to the "how" concept.
In other words, a cognitive model has methodological
components. Practically speaking, this means that we not only

use "is a", "has a", "consist of" etc. relations, but also "how to
do" procedural models.
Thus, to develop a cognitive model the OpenCookbook
repository has to reflect procedural and conceptual types of
knowledge. We distinguish in the systems grammar two
classes of terms: the first class is procedural (active,
methodological, the 'how') part – e.g. interactions and
functions, while the second class is conceptual (passive,
descriptive, the 'what') part – e.g. attributes.
Requirements are typed as general (related to the system) or
specific (related to an entity or other architectural part).
Requirements can be categorized: performance, scalability,
portability, extensibility, quality, usability, safety, reliability,
maintainability, control, security, cost, convenience,
robustness, recoverability etc. And each requirement is
classified according to its relevance (mandatory,
recommended, optional). This is needed for a more precise
definition of the requirements categories. Finally,
requirements are also classified according to a context pattern:
enabling, dependency, maintainance, testing, avoidance,
optimization, etc. Patterns reflect a context in which the goals
of the requirements are to be achieved.

Using such classifictaion method allows us to formalize the
model analysis and helps us to automate the decision making
process in case of contradictory requirements (see figure 3

Copyrights www.Altreonic.com 28.01.2009 5

Figure 3: Categorical analysis of requirements

http://www.Altreonic.com/

Categorical analysis of requirements allows us choose from all
possible system states the one that meet the requirements.
This is part of the decision-making process. Note, different
stakeholders can have different views on the importance of the
requirements measures. E.g. often safety and cost
requirements will be formulated. However, depending on
boundary conditions, not all requirements will have the same
importance. In such a case, we can use expert evaluation to
apply an ordering on the system requirements. Experts then
define numerical ranges for critical system requirements and
hence define the development priorities.

2.2.2 Specifications, derived from requirements

In general, the requirements and specifications definition
phases cannot be fully separated. While analyzing the
requirements the developer has often an initial notion about
decomposing the system into architectural parts and related
specifications. Note, this is not always desirable, because it
can prevent the engineering team from identifying and
selecting better alternatives.
A specification is a quantified requirement which consists of
Normal Cases, Test cases, Fault Cases and issues to be solved.
The Normal Case is a description of a required system
behavior or state. A Test Case is a specific type of requirement
with pattern 'test', a category and a severity (critical, major and
minor). A Test Case is derived from a Normal Case and can
be related to an issue. The purpose of a Test Case is to verify a
specification.
A Fault Case is derived from a normal case with pattern
'avoidance' and has the properties “category” and “severity”.

2.2.3 Architectural view

Following the specifications, the systems engineering process
will define the system architecture. Each set of specifications
is to be mapped onto selected entities that through their
interactions define the system. Note, at this stage, each entity
is only a functional ‘block’. The final implementation choice
is done in work packages. Often this will result in having to
make trade-off decisions between various alternatives. Such
an architectural view emphasises the need for standards, but
mainly at the interface level.

2.2.4 Modeling

While the architectural view is often seen as the activity of
development, one must keep in mind that architectural entities
and interfaces are actually there to let the system meet
specifications. In practice this means that a selected
architecture as an implementation is just a special case in the
context of “modeling”. In practice one will need additional
models that often represent at a more abstract level a partial
set of the specifications to be met. E.g. formal models can be
used to formally verify critical properties of the system and
simulation models can be used to verify that the requirements
of the system are coherent and complete without the need to
simulate all the details of the implementation architecture.
Hence, in practice it is better to speak of architectural, formal,

simulation and implementation models both contributing to
the development of the implementation architecture. Once the
implementation has been finalised, a final validation can be
done eventually resulting in measured deviations to the
specifications. Often these are called the characteristics of the
system as they can be different from one system to another
even when build using the same architecture.

2.2.5 Workflow view

The third view in the systems grammar is the workflow view.
It describes the development, i.e. the implementation activity
of the systems engineering process.
We say that a work plan produces work packages and can
include change requests. A work package consists of tasks
(related to the development of a concrete entity or other
architectural parts), description, start date, end date,
dependencies, responsibilities. A task also has attributes:
description, priority, deadline, deliverables, resources,
manager.
Each entity has an attribute 'status' which reflects the
development progress in time according to the project
schedule. The entity status can be:

• 'Purpose identified' - means that the entity has been
identified and received the name and the purpose
attributes.

• 'Attributes identified' - means that the attribute set
is complete (e.g. all attribute-value pairs are defined).

• 'Functions identified' - means that the internal
behavior is characterized (e.g. all event-function pairs
are defined).

• 'Interfaces identified' - means that all interactions
between all entities are identified.

• 'Ready for implementation' - means that all above
status levels have been reached.

• 'Implemented' - means that an entity is developed
and complete.

• 'Approved' - means that an entity has been validated
to meet all test cases.

• 'Integrated into the system' - means that the entity
is fulfilling its requirements at the system level.

We also consider the project status of an entity in
development.

• 'In work' - means that the entity is now being
defined.

• 'Frozen for reviews' - means that the process of
defining entities and their properties and behavior is
halted to allow a coherent review.

• 'Frozen and approved' - means that an entity is
accepted as necessary element of the system.

3. Relation between the meta-ontological
and ontological levels

Copyrights www.Altreonic.com 28.01.2009 6

http://www.Altreonic.com/

Any domain has its own ontology and defines its specifics as a
set of relations between entities. From the stakeholder's
perspective each domain has its specific set of terms and
associated rules of how things function. However, these terms
and rules are often quite similar at a higher level of
abstraction.
In OpenCookbook, ontologies are relations applied to real
systems. Meta-ontological relations on the other hand are a
reflection of ontologies in the more abstract domain of human
cognition. This essentially means that a generic cognitive
model is developed. Therefore, this domain is a meta-level
versus the physical one.
The concepts of the systems grammar are linked by meta-
ontological relations such as 'is described by', 'consists of', 'is
descendant of', 'has attributes', 'achieves' etc.
In OpenCookbook these relations are implemented using
references, e.g. between a requirement and an entity it refers
to, similarly there is a reference between a specification and a
requirement, etc. These relations can be both of the type 'one
to one' and 'one to many'. Some relations are implicit (e.g. an
aggregation of entities).

The systems grammar defines that a system is described by
requirements and that requirements are the initial point in
defining the system. In the requirements capturing phase the
developer has to define names of entities and interactions to
which a requirement is related. So, when defining
requirements an initial architectural decomposition into
entities and interactions takes place. This decomposition is
also used in the work plan view, because a task or work
package always concerns a concrete architectural part.

All entities and interactions have their own set of requirements
and specifications as implicit purposes or target functions. As
entities and interactions compose the system, the sum of

purposes of all entities and interactions achieves the mission
of the system. Thus, the main reasoning frame of
OpenCookbook is an architectural modeling one. It provides a
framework for all views that one can have in a SE project.

3.1 Applying the 'interacting entities' paradigm
for the realization of requirements and
specifications relations

Requirements and specifications reflect interactions between
real entities at the ontological level, but at the same time
requirements and specifications are entities with specific
(logical) relations between them at the meta-ontological level.
So, we can use the 'interacting entities' paradigm to reason
about the relationships between requirements and
specifications. It allows us to apply a unique approach for all
phases of the systems engineering process.
The "interacting entities" paradigm is applicable for a wide
range of system domains. In each domain interactions and
entities can defined in a domain specific way. This is more a
matter of denomination (using words that are commonly used
in a specific domain) than one of substance.

OpenCookbook allows the decomposition of a system into
entities and interactions. Its approach is anthropocentric and
reflects the domain of human cognition. To understand a
system, we need to decompose a united reality first into
separate entities that implement specified properties, and by
doing so the system re-emerges by defining the interactions
between these entities.
A key question is: what kind of relations we have to
implement in OpenCookbook to reflect the reality properly (or
more correctly say, “enough for achieving the system as a
goal”)? The systems model must be isomorphic to the real

Copyrights www.Altreonic.com 28.01.2009 7

Figure 4: Relations between conceptual and architectural levels of system development

http://www.Altreonic.com/

system. E.g. relational databases apply an "entity" –
"relationship" paradigm and rely on the set theory. However,
the relationships between database fields is not isomorphic to
the cognitive model of a system under development.
The history of programmable systems is characterized by a
transition from an imperative to a declarative approach. The
application of the declarative paradigm in OpenCookbook
implies defining predicates of a knowledge base and defining
rules of logical deduction.
To develop a logical system which allows reflecting a wide
range of domains we need general relationships such as: “is
a”, “has a”, “consist of”, “is part of”, etc. These notions reflect
structural relations which can be applied to any system,
because any system can be defined as a set of having structure
entities. Besides these structural relationships, we need also
temporal (e.g. now, next, previous) and functional ones.
As a conclusion we can say that the "interacting entities"
paradigm allows us to apply a declarative paradigm for
cognitive model development. Defining taxonomy and logical
relationships between its terms provides us with a model that
is isomorphic with the domain of human cognition.

4. The transition from the meta-
ontological to the ontological level

At the initial stages of the systems engineering process, a
precise architectural decomposition into real entities and
interactions does not yet exist. There is only an incomplete
cognitive model expressed in the form of requirements and
specifications. The task for the systems engineer is to
transform it into the ontological domain, i.e. to develop an
architectural model that will be isomorphic to the real system.
During the first stage of defining the system we allocate
qualifiers (see Fig. 4) that will be used in the ontological
domain. The architecture definition at this requirements and
specifications capturing phase is nominal - we only have
names, i.e. a vocabulary of objects and interactions, that is not
yet the real, ontological or physical model. This is the first
step of the transition from the meta-ontological to the
ontological level.

Thus, the linking pin between ontological and meta-
ontological levels is primarily the system itself i.e. the entities
and interactions in the architectural view on the system (see
Fig. 5).
The next step is the transformation of meta-ontological into
ontological relationships, which are different by nature (e.g.
subordination between requirements does not imply that such
subordination exists between the architectural entities). In
general, the development of methods for making the transition
from the cognitive model to the architectural model is a
challenging task. The essence of the method will consist in
finding ontological relations and entities in a cognitive model.
A cognitive model must take into account the way humans
think. In the case of requirements and specifications capturing
we have a limited cognitive model. We suggested that the
description reflects structural, functional and temporal
relations. So, we have a final set of statements and the task is
reduced to performing a linguistic analysis of the formalized
requirements and specifications language. Introducing such a
formalized language is now being performed.

5. Prototype development

To test the concepts and its applicability a prototype
environment was developed using the Plone [3] and next the
Drupal [4] Open Source Content Management System
environments. This means that a new project or system-under-
development is actually created like a web portal with specific
modules that reflect the systems grammar. Utilities and scripts
allow us i) to make the link between the different phases of the
systems engineering process, ii) to run tests for checking
consistency and completeness and iii) to generate a document.
Using such an existing environment has many advantages. For
example, support for multi-user administration and the
accompanying review process is built in. Being a web based
tool, it also caters for distributed team work. Other advantages
are that existing plug-in modules can be used to e.g. create a
Wiki, forum and repositories of the project background and
foreground documentation.

Copyrights www.Altreonic.com 28.01.2009 8

Control
system

Engine

Chassis
Locks

Belts and
cushions

Control
system

Engine

Chassis
Locks

Belts and
cushions

Simplicity
of driving

Means of
transport

Smooth
movement

security

Safety at
collisions

Simplicity
of driving

Means of
transport

Smooth
movement

security

Safety at
collisions

Architectural
Decomposition

Fig. 5. Transition from conceptual into architectural level

http://www.Altreonic.com/

Another aspect that is of importance in the global context of
systems engineering is that we must avoid that such an
environment is a stand-alone tool. As mentioned at the
beginning, Systems Engineering (SE) is considered to be the
process that transforms a need into a working system. Many
domains are crossed and entities from one domain are
reformulated or better said translated in another domain. The
issue here is not so much syntax (syntax is often domain or
tool specific) but semantics. Such translations, often involving
human intervention, are not always univoque or
straightforward because of the hidden or assumed context. A
typical example are dataflow diagrams. A first sight the
diagrams they look like connected processes that exchange
data using the connections between the blocks. In reality, in a
dataflow diagram the communication is implicit and actually
often hides the hidden assumption of shared memory. Hence,
translating dataflow diagrams to a process oriented
programming system or to a distributed computing
environment is not a straightforward task as data dependencies
must be analysed, impact on performance must be analysed,
etc. In the context of safety driven designs, this opens the door
to human errors and to unintended side-effects, jeopardizing
the correctness of the system under development. In general,
one must be aware that different domains often have
contradictory concepts, might have overlapping but still subtle
differences in their semantics or worse might not have the
equivalent concept at all.

When standards are then used like e.g. UML, this fact often
results in the emergency of a wide range of “dialects” to fill
the gaps, but in the end undermining the usefulness of the
original standard. For this reason, we adopted an approach
based an “unified semantics” from the beginning and adopted
a restricted architectural paradigm (interacting entities). In the

end the goal is to define a single set of tools and components
covering the whole processflow from requirements till the
final realisation as an embedded system. Fig 6. illustrates this
approach.

5.1 Requirements tracing
All activities in a systems engineering process can be seen as a
coherent set of views on the same system under development.
Therefore, any requirement, specification or task is linked
with a set of entities. We also indicate in any architectural
description references to corresponding requirements,
specifications and tasks. Such links are needed for feedback
and traceability between the different system views. It also
allows conducting e.g. an impact analysis when changes are
applied.

5.2 Experiments in different domains
In order to fine-tune the prototype and to verify the
applicability to different domains, a number of limited
experiments were conducted. Projects were defined to develop
a Real Time Operating System (OpenComRTOS), a process
flow supporting the IEC61508 safety standard, and a
processor software environment. In the course of these
experiments refinements were applied, but overall these
experiments in diverse domains indicate the suitability of the
approach. Most issues were related with the ergonomics of the
environment and some deficiencies of the Plone CMS
implementation. For this reason we later use Drupal CMS,
with the additional benefit that it features a taxonomy system.

The Systems Engineering approach was also tested by
mapping it onto a Business Process Engineering method.
Here, it was found that the meta-ontological concepts fully
apply although often a very different terminology is used or
different tools. E.g. while a technical engineer might use
virtual prototyping or CAD tools to simulate different user
scenarios, a business manager will likely create a business
plan, simulating the business process using a financial
spreadsheet. In the context of a business environment this
reflects that the “mission” of the system is to generate profit
whereas in the engineering domain the mission is often to
provide a certain functionality.

A final test was the use of the OpenCookbook modeling
approach in the development of the OpenComRTOS
mentioned above. Such a formal modeling approach raises
even further the abstraction level, from the meta-ontologiocal
domain in the fully abstract domain of mathematical logic. It
was found that this was very helpful. A first point to support
this statement is that the modeling technique works in an
incremental way. From a small very abstract model the
refinements and details are added until a model emerged that
was very close to the implementation architecture. Each
intermediate model was checked exposing logical errors in the
design. As a consequence, the project progressed in small
steps with each step being subjected to an intensive review

Copyrights www.Altreonic.com 28.01.2009 9

Fig. 6 Unified semantics SE process flow.

http://www.Altreonic.com/

process via internet by all team members. Secondly, the
abstraction level is completely removed from the
implementation domain. This allowed us to detect the
negative impact of being too familiar with the implementation
domains and how this biases engineers and stakeholders as
humans. The result was a much cleaner and more compact
systems architecture. Furthermore, the team had a much
greater confidence in the correctness of its architecture.

For the interested reader, we used the TLA/TLC modeling
language and checker of Leslie Lamport [4]. This environment
supports the notion of concurrent processes and
communication between them. This corresponds with the
Interacting Entities used for the OpenCookbook systems
grammar.

6. Related work
The work done with OpenCookbook is closely related with
work going on in other domains, such as architectural
modeling. This has resulted in a number of graphical
development tools and modeling languages such as UML and
the recent SysML. Such approaches however suffer from a
number of issues:

- Most of the architectural models were developed
bottom-up, e.g. as a means of representing

graphically what was first defined in a textual format.
Hence, such approaches are driven by the
architecture of the system and its implementation. As
we discovered in the tests, such an approach biases
the stakeholders to think in terms of known design
patterns and results in less optimal system solutions.

- Most of the modeling approaches limit themselves to
a specific architectural domain only, requiring other
tools to support the other SE domains. This poses the
problem of keeping semantic consistency and hence
introduces errors.

- Most of the tools have no formal basis and hence
have too many terms and concepts that seem to
overlap semantically. In other words, orthogonality
and separation of concerns is lacking.

- Most of the tools on the market bring too many
details to the top level, with little support for
abstracting away the details. This undermines the
overview and abstraction power.

Nevertheless, when properly used, such architectural modeling
contributes to a better development process. Overall the
OpenCookbook project emphasizes the cognitive aspect of the
SE process whereas the different activities are actually just
different “views” on the system under development. Most of
the related approaches do not take these aspects into account.

Copyrights www.Altreonic.com 28.01.2009 10

Figure 7: OpenCookbook systems grammar

http://www.Altreonic.com/

7. Real world use

Although tests with the prototype version in different domains
indicated the conceptual suitability of the approach, a number
of issues were discovered during practical use. We list them
below:

– Too abstract for the practical engineer: The
prototype OpenCookbook implemented a formalised
but rather abstract approach to systems engineering.
Most engineers and stakeholders alike often rely
mostly on heuristic knowledge and have a hard time
formulating their thoughts in the systems grammar
framework.

– OpenCookbook was defined with the implicit
assumption that a project is started from scratch.
However most projects will reuse parts of an existing
architecture, hence the starting point should be a
template project rather than an empty one.

– Many organisations use a lot of heuristic knowledge
under the form of checklists. OpenCookbook has no
concepts to include such knowledge and link it with
the other elements of the OpenCookbook Systems
grammar.

– Official standards like IEC61508 often define rules
and conditions that must be satisfied in order to allow
the project to be certified according to the standard.
On the other hand many of the standards are often
only defining conditions or guidelines for the
development process, whereas often issues have their
origin in the requirements and specifications phase.

This analysis has resulted in the definition of a number of
extensions to the environment. We highlight the main
differences with OpenCookbook. Essentially, the extensions
put the work plan concepts at the same level of the
requirements-specifications and modeling activities. The
difficulty is that the first domain reflects the design view that
is mainly time-independent whereas the work plan view
requires taking into account a timely order of steps that have
to be followed to arrive at a product release.
The complete OpenCookbook systems grammar is represented
synoptically in Figure7.

7.1 Checkpoints
Given the similarity between heuristic knowledge and
standard requirements, the notion of a “checkpoint” was
introduced. A checkpoint can be related to heuristic
knowledge or a specific standards rule but linked with any
entity of the project (in any view). As such checkpoints are
essentially entities that help in knowledge management, often
generic and heuristic in nature. Checkpoints also work as on-
line design wizards, shortening the project time as the learning
curve is reduced. As such checkpoints are not part of a given
project but are meta-rules applying to a specific, narrowly or
broadly defined application domain. A typical use will be to
support a product family whereby each product is different but

e.g. reuses parts of a previous projects. Another class of
checkpoints are related to a specific domain of properties, e.g.
safety or security, where often deep domain knowledge must
be combined with certification standards.

7.2 Issues and Change Requests.
Issues are essentially like checkpoints but they arise in the
course of a project. When resolved, they can result in a
checkpoint entering the pool of knowledge. In a project they
act like a reminder.
Change requests on the other hand arise when during the
course of a project approved specifications or decisions (like
architectural choices) are to be modified or deemed to be
modified. This can be due to changing stakeholder
requirements or because during development (e.g. during
testing) deviations from the specificatons or issues are
discovered. As the acceptance of a Change Request can result
in serious and costly rework, a Change Request must be
carefully analysed for its impact. In the worst case, it can
result in an early termination of the on-going project and the
creation of a new one, although part of the work of the
previous project can be reused.
Issues and Change Request can also be linked with any entity
of the project.

7.3 Explicit difference between architectural,
simulation and implementation models.

Although OpenCookbook is not a domain specific modeling
environment (it does so only at the meta-level), the
environment must keep track of all models developed and how
the sub-entities relate to the other entities in the systems
grammar. In most model driven architectural approaches
developing a model is sometimes seen as defining the
specifications or even developing the actual implementation
whereby simulation and formal modelling are seen as
supporting activities. Doing so carries the risk that properties
of these different modelling domains are confused or taken for
granted. Nevertheless, engineering is essentially modelling as
far as all these modelling activities are done concurrently and
at each stage the dependencies with the other elements of the
systems grammar are visible. Therefore we opted to make this
explicit. Note that in OpenCookbook the models themselves
are external and often provided by third party tools. We also
not the special case of the implementation model. When this is
achieved, this basically means that of all the possible
architectural models one was selected and approved as the one
that is the system that meets the mission requirement.

7.4 Workplan and tasks.
In general specifications result in architectural entities (and
interactions) that must fullfill these specifications. Often they
will be grouped because functional clustering will occur. Such
a functional cluster will then be assigned to a Work Package
for implementation.
We opted for the explicit architectural paradigm of
“interacting entities”. This has the major benefit that it allows

Copyrights www.Altreonic.com 28.01.2009 11

http://www.Altreonic.com/

a much easier separation of the architectural issues and helps
in defining work packages are are small enough and well
separated from each other. The granularity can be adapted to
the nature or the working style of the organisation. The benefit
of this architectural paradigm is also that in principle all sub-
system entities only “interact” through well defined protocols
and interfaces. As we strive to achieve unified semantics, this
also results in a preference for concurrency at the
implementation level. In the context of embedded systems
resulting in a natural use of multi-tasking programming
systems and multi-CPU execution platforms. This is one of the
reasons why OpenComRTOS was formally developed as one
of the first elements of Altreonic's systems engineering
methodology. The runtime layer is essential for performance
and safety properties of the system.
We distinguish the following classes of tasks. A development
task is the actual development activity, but can include
activities like simulation, prototyping or formal model
verification. It can only start when the specifications are
approved. The result however should be a selected
implementation model.
A verification task is defined as the activity that will verify not
an implementation but the development task itself. It can be
seen as an audit of the development activity and need to verify
checkpoints related to the development activity itself. It
answer the question 'did we develop it right?' Typical
examples are the adherence to coding rules, proper version
management, design rules, review meetings, etc. Note that
verification can only really start when the implementation has
reached the status “work done”, although this should not
exclude spot check verification while the development is still
going on. It is clear that verification should be done by
different people that those carrying out the development.
A test task will test (according to the test cases of the
specifications) the result developed. It can only start when the
verification task was approved.
Finally we consider the validation task. A validation task will
validate that the implementation result (after verification and
testing was succesful) meets the original requirements. It
answers the question 'did we develop the right system?'.
Validation works in a top-down fashion. The final validation
is the integration of all developed sub-systems. If this is
succesful, the product can be 'released'. Note that at this stage
some properties might be different from the specifications. We
call these the characterisation of the system.
Another issue here is that often a workpackage is related to
specific sub-system entity requiring activities like
development, testing, verification and validation but in a given
organisation people will have been assigned to a specific class
of activities. E.g. testing will be done by the test department,
and then often the test team is made responsible (or blamed
when an issue is found). This is methodologically wrong. At
all stages must the Work Package team leader remain
responsible for all aspects of his assigned Work Package,
because ultimately an issue found during testing will often be
traced back to a design issue.

7.5 Other project items.
Other features were also introduced like the definition of roles,
milestones, release point and version management. However
these can be supplied by external environments (e.g. links to a
software repository) or by using the build-in support of drupal.

Conclusions

OpenCookbook implements a formalized requirements and
specifications capturing environment up to the level of
identifying major architectural elements and workplan
packages. The whole process is formalized through the use of
a unifying paradigm based on the notion that every system in
(most) domains can be described at an abstract level by a set
of interactions and entities. We emphasize on interactions as a
base concept of our approach more than on entities as e.g. in
the object-oriented paradigm. This is supported by the use of
a “systems grammar” that provides a standardized ontology
and meta-model to define a system under development.
Current work focuses on adding more formal verification
processes. A link is being established as well with the
OpenComRTOS development environment allowing to
directly map specifications onto OpenComRTOS tasks and
services.

References

1. (www.OpenLicenseSociety.org)
i. Open License Society white paper.
ii. OpenCookbook Systems Grammar
iii. OpenComRTOS architectural design.
iv. www.altreonic.com

2. www.plone
3. www.drupal.org
4. http://research.microsoft.com/users/lamport/tla/tla.html
5. http://www.omgsysml.org
6. http://www.uml-forum.com /

Project funding

Part of the work by Open License Spciety has been done
under ITEA funding, project EVOLVE (Evolutionary
Validation, Verification and Certification).

OpenCookbook is used in the Flanders Drive ASIL project by
Altreonic to incorporate Safety related standards in a generic
project methodology. OpenCookbook supports the
development of the methodology using a customised version
of the generic OpenCookbook.

Copyrights www.Altreonic.com 28.01.2009 12

http://www.Altreonic.com/
http://www.uml-forum.com/
http://www.uml-forum.com/
http://www.omgsysml.org/
http://research.microsoft.com/users/lamport/tla/tla.html
http://www.zope.org/
http://www.plone.org/
http://www.plone.org/
http://www.plone.org/
http://www.plone.org/
http://www.OpenLicenseSociety.org/
http://www.altreonic.com/

