Workshop:

Dealing with real-time in real world Hybrid Systems

Pieter van Schaik

Altreonic NV

August 24, 2015

From Deep Space To Deep Sea

Outline

- Overview of Hybrid Systems
- A Practical Example: Yaw Control
- Summary
- Questions for Discussion

Overview of Hybrid Systems

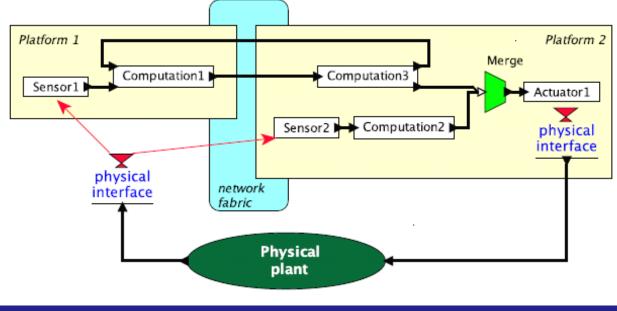
Abbreviated definition:

"A Hybrid System is a dynamical system with both discrete and continuous state changes"

Simply stated:

23/08/2015

A Hybrid System is embedded software controlling a physical process



The Challenge

How can we provide people and society with Hybrid Systems that they can trust their lives on?

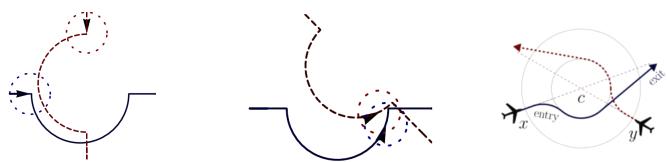
- Methodology to enable compositional certification
 Eliminate recertification after integration
- New Formal Modeling Techniques
 - Conventional models focus on discrete systems

From Deep Space to Deep Sea

Motivating Examples

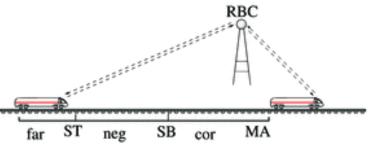
Air Traffic Control Systems (ACAS X)

 Differential Dynamic Logic indicated conflicts with actual advisory



European Train Control System ETCS

 Successful verification of cooperation layer of fully parametric ETCS



23/08/2015

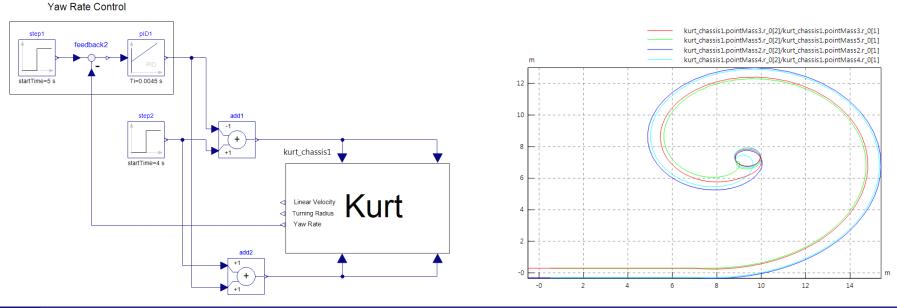
A Practical Example: Yaw Control

- Goal: Formally model discretization of the KURT skidsteer yaw control
 - Specific focus on stability of the closed loop system
- Abridged development embedded in Hybrid Event-B formalism

Reference: R. Banach, E.Verhulst, P. van Schaik. Simulation and Formal Modeling of Yaw Control in a Drive-by-Wire Application. *FedCSIS 2015*

Simulations of Yaw Control

- Initial design validation with Modelica simulation
 - Stability of control strategy
- Simplified PID based control strategy
- PID parameter optimization by practical tuning methods



From Deep Space to Deep Sea

7

Modeling Continuous Time Systems

Transfer Function

23/08/2015

Derived from linear time invariant (LTI) differential equation using *Laplace Transform:*

$$F(s) = \int_{0-}^{\infty} f(t) e^{-st} dt$$

where
$$s = \sigma + j\omega$$

• Transfer function is the ratio of input and output polynomials in *s*, evaluated with zero initial conditions

$$\frac{C(s)}{R(s)} = G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

 Location of numerator and denominator roots in complex *s-plane* characterise transfer function response

Exponential Stability of LTI Systems

• Exponential stability analysis with transfer function:

$$G(s) = \frac{10(s+4)(s+6)}{(s+1)(s+7)(s+8)(s+10)}$$

General terms of the output *c(t)* with unit step input:

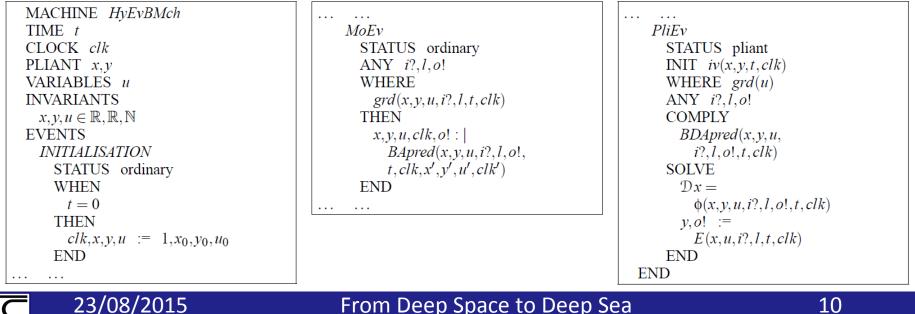
$$g(t) \equiv A + Be^{-t} + Ce^{-7t} + De^{-8t} + Ee^{-10t}$$

• i.e. any positive real pole causes unstable behaviour

23/08/2015

Hybrid Event-B

- Hybrid Event-B an extension of Event-B
 - All variables are functions of time
 - Mode events and variables discrete events and variables
 - Pliant events and variables variables with continuous evolution over time
 - Interfaces allow access to shared variables



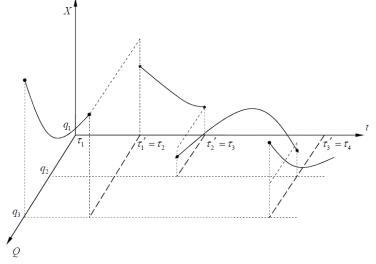
Discrete Event Systems

- Classes of DES models:
 - Untimed DES
 - only concerned with logical behaviour, ex. whether a particular state is reachable
 - Timed DES
 - concerned with both logical behaviour and timing information, ex. whether a particular state is reachable and when it will be reached
- Stability of DES:

for some set of initial states the system's state is guaranteed to enter a given set and remain there forever

Hybrid Systems

- General Hybrid Dynamical System
 - dynamic behaviour differential/difference equations
 - discrete state space transition map



- Stability of Hybrid Systems
 - dynamic behaviour stability exponential stability
 - properties of the transition map

Formal Modeling Yaw Control

• KURT yaw rate mathematical model:

$$\frac{d}{dt} yrm(t) = C_k stc(t)$$

• PID controller mathematical model:

$$stc(t) = K_p[yre(t) + \frac{1}{T_I} \int_0^t yre(s) ds + T_D \frac{d}{dt} yre(t)]$$

• Substituting *yre(t) = YRR - yrm(t)* results in:

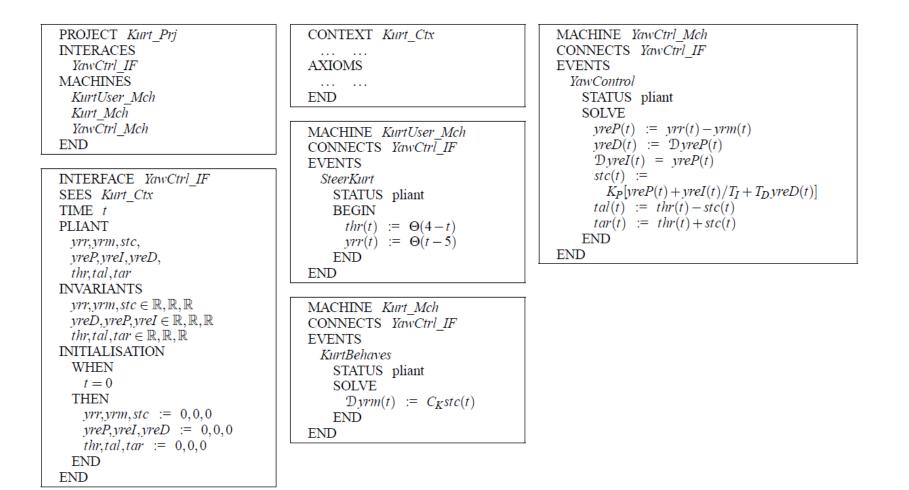
$$(T_{D} + \frac{1}{C_{k}K_{P}})\frac{d^{2}}{dt^{2}}stc(t) + \frac{d}{dt}stc(t) + \frac{1}{T_{I}}stc(t) = 0$$

• Exponential stability requires that:

$$T_I > 0 \text{ and } T_D + \frac{1}{C_k K_P} > 0$$

Continuous Time HEB Model

• Equivalent Hybrid Event-B system:



General Model of Yaw Control

Addressing more arbitrary steering episodes requires solving for:

$$\frac{d}{dt}\mathbf{stc}(t) = \mathbf{Astc}(t) + \mathbf{b}(t)$$

where **A** is constant, **stc**(*t*) depends on *stc*(*t*) and *stc*'(*t*), **b**(*t*) is dependent on the inhomogeneous term:

$$inh(t) = \frac{1}{C_K} \left(T_D \frac{d^3}{dt^3} yrr(t) + \frac{d^2}{dt^2} yrr(t) + \frac{1}{T_I} \frac{d}{dt} yrr(t) \right)$$

23/08/2015

Discretizing Yaw Control

Discretizing Hybrid Event-B Yaw Control

- Implementation on a discrete computing platform requires sampling
- Strategy of viewing discretizing as a refinement poses difficulties:
 - formal standpoint is sampling impoverishes the continuous model
 - degrades information available for consistency proof
- Argument for HEB approach:
 - stability of the discretized system ensures that the system can be steered to a desired regime

Sampled Data Systems

- Sampling frequency must be related to characteristics of function being sampled
 - Sampling frequency too low -> loss of important information
 - Sampling frequency too high -> unnecessarily cost/complexity
- Important to understand the effects of sampling

Single Bandwidth Illustration

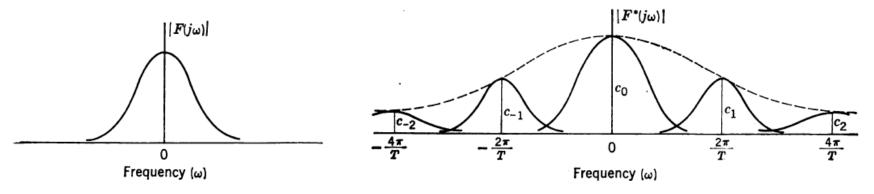
https://en.wikipedia.org/wiki/File:Fourier_series_and_transform.gif

23/08/2015

From Deep Space to Deep Sea

Effects of Sampling

Pictorial representation of the effect of sampling:

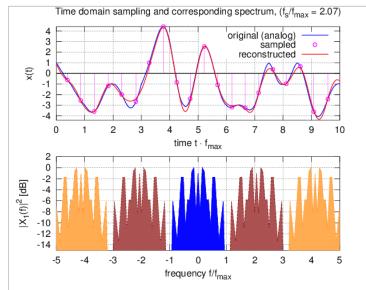


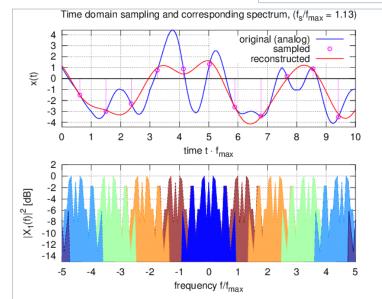
- The central signal spectrum can be recovered by low pass filtering (anti-aliasing filter)
- Shannon-Nyquist theorem limits sampling interval: For band limited signals:

$$T_{s_{\max}} = \frac{\pi}{W}$$

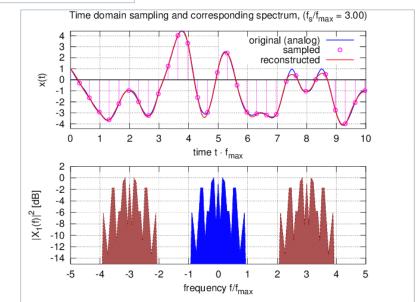
23/08/2015

Sampling Effect Illustration





23/08/2015



From Deep Space to Deep Sea

Stability of Sampled Data Systems

Sampling period affects stability:

Example: Consider the following SDS transfer function:

$$T(z) = \frac{10(1 - e^{-T})}{z - (11e^{-T} - 10)}$$

For *T > 0.2* the resulting transfer function is unstable

Discretized HEB Yaw Control

Resulting discretized Hybrid Event-B model:

PROJECT KurtD_Prj REFINES -??- Kurt_Prj INTERACES YawCtrlD_IF MACHINES KurtUserD_Mch KurtD_Mch YawCtrlD_Mch END	$ \begin{array}{c} \dots & \dots \\ \text{INITIALISATION} \\ \text{WHEN} \\ t = 0 \\ \text{THEN} \\ yrr_D, yrm_D & \coloneqq 0, 0 \\ stc_D, stc_D^{pr} & \coloneqq 0, 0 \\ yreP_D, yreP_D^{pr} & \coloneqq 0, 0 \\ yreI_D, yreD_D & \coloneqq 0, 0 \\ thr_D, tal_D, tar_D & \coloneqq 0, 0, 0 \end{array} $	MACHINE KurtD_Mch REFINES -??- Kurt_Mch CONNECTS YawCtrlD_IF EVENTS KurtBehavesPli REFINES KurtBehaves STATUS pliant COMPLY skip END KurtBehavesMo
INTERFACE YawCtrlD_IF REFINES -?? YawCtrl_IF SEES KurtD_Ctx TIME t PLIANT	END END CONTEXT KurtD_Ctx EXTENDS Kurt_Ctx	STATUS ordinary WHEN $(\exists n \in \mathbb{N} \bullet t = nT)$ $yrm_D := yrm_D + C_KTstc_D$ END END
$yrr_D, yrm_D, \\stc_D, stc_D^{pr}, \\yreP_D, yreP_D^{pr}, \\yreI_D, yreD_D, \\thr_D, tal_D, tar_D \\INVARIANTS \\yrr_D, yrm_D \in \mathbb{R}, \mathbb{R} \\stc_D, stc_D^{pr} \in \mathbb{R}, \mathbb{R}$	$MACHINE KurtUserD_Mch$ REFINES KurtUser Mch	MACHINE YawCtrlD_Mch REFINES -??- YawCtrl_Mch CONNECTS YawCtrlD_IF EVENTS YawControlPli REFINES YawControl STATUS pliant
$yreP_{D}, yreP_{D}^{pr} \in \mathbb{R}, \mathbb{R}$ $yreI_{D}, yreD_{D} \in \mathbb{R}, \mathbb{R}$ $thr_{D}, tal_{D}, tar_{D} \in \mathbb{R}, \mathbb{R}, \mathbb{R}$ $thr_{D} = thr$ $yrr_{D} = yrr$ $ yrm_{D} - yrm < B_{yrm}$ $ stc_{D} - stc < B_{stc}$ $ stc_{D}^{pr} - stc < B_{stc}$	CONNECTS YawCtrlD_IF EVENTS SteerKurt REFINES SteerKurt STATUS pliant BEGIN $thr_D(t) := \Theta(4-t)$ $yrr_D(t) := \Theta(t-5)$	COMPLY skip END <i>YawControlMo</i> STATUS ordinary WHEN $(\exists n \in \mathbb{N} \bullet t = nT)$ $yreP_D := yrr_D - yrm_D$ $yreP_D^{pr} := yreP_D$ $yreI_D := yreI_D + TyreP_D$
$\begin{split} yreP_D - yreP &< B_{yreP} \\ yreP_D^{pr} - yreP &< B_{yreP} \\ yreI_D - yreP &< B_{yreI} \\ yreD_D - yreI &< B_{yreI} \\ yreD_D - yreD &< B_{yreD} \\ tal_D - tal &< B_{tal} \\ tar_D - tar &< B_{tar} \\ \\ \dots & \dots \end{split}$	END END	$yreD_{D} := (yreP_{D} - yreP_{D}^{pr})/T$ $stc_{D} := (K_{P}[yreP_{D} + yreI_{D}/T_{I} + T_{D}yreD_{D}]''$ $stc_{D}^{pr} := stc_{D}$ $tal_{D} := thr_{D} - stc_{D}$ $tar_{D} := thr_{D} + stc_{D}$ END END

From Deep Space to Deep Sea

A Practical Example: Yaw Control

Discretized Stability Analysis

• A similar approach to analogue counter part resulted in:

 $stc_{D,k+3} - 2stc_{D,k+2} + stc_{D,k+1} = -C_{K}K_{P}[T_{D}(stc_{D,k+2} - 2stc_{D,k+1} + stc_{D,k}) + T(stc_{D,k+2} - stc_{D,k+1}) + T^{2}stc_{D,k+2} / T_{I}]$

• Requires solving for:

 $W^{3} + C_{k}K_{P}[T^{2} / T_{I} + T + T_{D} - 2 / C_{k}K_{P}]W^{2} + C_{k}K_{P}[1 / C_{k}K_{P} - 2T_{D} - T]W + C_{k}K_{P}T_{D} = 0$

• For stability, eventually deduce:

$$1 > C_k K_P T_D$$

Summary

- Viewing discretization as an instance of refinement is demanding
- Many simplifications required to render calculations tractable
 - mathematical insight and domain knowledge required
- Closer cooperation needed between frequency domain and state space approaches

Questions for Discussion

- Can sampling theory be applied to reconcile continuous and discrete views in a way that is acceptable to formal techniques?
- Can supporting tools make hybrid system formal methods more accessible to engineers?

